diff --git a/main.tex b/main.tex index 7baf9f8e3425b945a68f55a863721f7b9654f482..35869fc68471f174a1d752ebf997ee0e684df413 100644 --- a/main.tex +++ b/main.tex @@ -410,21 +410,21 @@ The intuition of the following lemma is that if two sites have distance $d$ in t The proof goes by induction on $d(X,Y)$. The statement is trivial for $d(X,Y)=0$, and is easy to check for $d(X,Y)=1$, by looking at resample sequences that reach the all $1$ state in at most $0$ step (which is simply the case when everything is sampled to $1$ initially). Now we show the inductive step, assuming we know the statement for $d$, and that $d(X,Y)=d+1$. - First we assume, that $\NZ{X}\subseteq\overline{A^X}$, i.e., $A^X=A^X\cap \Z{X}$. + First we assume, that $\NZ{X}\subseteq\overline{A^X}$, i.e., $A^X\subseteq \Z{X}$. For $i\in[d]$ we define $A_i^X:=A^X\cap{\NZ{\overline{\partial}(X,i)}}\cap\bigcap_{j\in[i-1]}\Z{\overline{\partial}(X,j)}$, and define $A_{d+1}^X:=A^X\cap\bigcap_{j\in[d]}\Z{\overline{\partial}(X,j)}$, - it is easy to see that it is partition $A^X=\dot\bigcup_{i\in [d+1]}A_i^X$. - Also it is easy to see that for all $i\in[d+1]$ we have $A_{i}^X\subseteq\Z{X}\cap\bigcap_{j\in[i-1]}\Z{\overline{\partial}(X,j)}$, and therefore + so that they form a partition $A^X=\dot\bigcup_{i\in [d+1]}A_i^X$. + It is easy to see that for all $i\in[d+1]$ we have $A_{i}^X\subseteq\Z{X}\cap\bigcap_{j\in[i-1]}\Z{\overline{\partial}(X,j)}$, and therefore \begin{equation}\label{eq:AXorder} \P^G(A_{i}^X)=\bigO{p^{i}}. \end{equation} Now we use the Splitting lemma~\ref{lemma:splitting} to show that for all $i\in[d]$ \begin{align} \P^G(A_{i}^X) - &=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \P^{G\setminus B(X,i)}(X,i)(\NZ{\overline{\partial}(X,i)}) \tag{by Lemma~\ref{lemma:splitting}}\\ - &=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \left(\P^{G\setminus Y\setminus B(X,i)}(X,i)(\NZ{\overline{\partial}(X,i)})+\bigO{p^{d+1-i}}\right) \tag{by induction}\\ - &=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \P^{G\setminus Y\setminus B(X,i)}(X,i)(\NZ{\overline{\partial}(X,i)})+\bigO{p^{d+1}} \tag{by equation \eqref{eq:AXorder}}\\ + &=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \P^{G\setminus B(X,i-1)}(X,i)(\NZ{\overline{\partial}(X,i)}) \tag{by Lemma~\ref{lemma:splitting}}\\ + &=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \left(\P^{G\setminus Y\setminus B(X,i-1)}(X,i)(\NZ{\overline{\partial}(X,i)})+\bigO{p^{d+1-i}}\right) \tag{by induction}\\ + &=\P^{G\cap B(X,i)}_{\overline{\partial}(X,i)}(A_{i}^X)\cdot \P^{G\setminus Y\setminus B(X,i-1)}(X,i)(\NZ{\overline{\partial}(X,i)})+\bigO{p^{d+1}} \tag{by equation \eqref{eq:AXorder}}\\ &=\P^{G\setminus Y}(A_{i}^X)+\bigO{p^{d+1}} \tag{by Lemma~\ref{lemma:splitting}}\\ &=\P^{G\setminus Y}(A_{i}^X)+\bigO{p^{d(Y,Y)}}. \label{eq:indStep} \end{align} @@ -435,7 +435,7 @@ The intuition of the following lemma is that if two sites have distance $d$ in t \overset{\eqref{eq:AXorder}}{=}\P^{G\setminus Y}(A^X)+\bigO{p^{d(Y,Y)}}. $$ We finish the proof by observing that if $\NZ{X}\nsubseteq\overline{A^X}$, - then we necessarily have $\NZ{X}\subseteq A^X$, and therefore we can use the above proof with $B^X:=\overline{A^X}$ and using that $\P(A^X)=1-\P(B^X)$. + then we necessarily have $\NZ{X}\subseteq A^X$, and therefore we can use the above proof with $B^X:=\overline{A^X}$ and use that $\P(A^X)=1-\P(B^X)$. \end{proof} \begin{theorem} If $2< 2m\leq n$ and $m\leq M$, then $R^{(n)}=\E^{[-M,M]}(\Res{0})+\bigO{p^{m}}$.