diff --git a/diagram_paths2.pdf b/diagram_paths2.pdf new file mode 100644 index 0000000000000000000000000000000000000000..5d90e4d77f8f1ecca7a07923eaf1779c75b4de02 GIT binary patch literal 61329 zcma&MQ^0-A>hnnBvw#?;A-keQW@nehK>&I|ABK6$Xo^2HgFM9FsW%{Z6+2Wj+tc6w? zafc*vDEa}tKU29R4xc(HHIi6DN^~+e@78Ik=wa|TWb!(_8|P16LU=r6_RDqDiE82p>bf30?il-e1(xUj~o9Z(O^8j6_U; z1`T_fY{PFbMN=n#Ub`ThECENSa9&$1#?mk<$@ywdJ8zeE>}oW+Jd4A!`fh2v{O3N^ z*!MnlRVxDo;=49V?cUgA0QJd=b9RF7->Bb@5?NC?i*Ms|+@HP?tldc5=cj(7Jussc z4!Z-q93887{GZ>JswhC|UY4;4rz93Gr1TQirIwwnBVJ}G`ySUmV*K_?)3^3v?wzCM z7a?2E$VzSs`{ZGRa?X6$?wQ7u*|d(xT6d>vQqJ5d?K8!AtxVgxgbj-&qI&?G3Rt_n$!Rw74=fBXaBa#dXk@zaXsfu9RsrDgvO{{nJ)iL#Wvm{@|SHrT52v z)Mk0iZ5ap|Yxj=Mb3&$$Y#ZRpLjSp~dLa&5Wmg8Hb7eNR6#??FHLqZI&@X^d*z)kX z);wP@QF2k)+w1kg*;H^s}zj==MVrFSei>Wng_$OVEkCl;E-+!#o7F3`4*@o10E z^dy>RPCEyez(oJ~*|8Jo)SsRz76i+lT6dfP2+6tjsBr0zz{sryWS#0>uK?t1QLR)m zp&kW6(?^6o1c<2rEhN{dz;=ADtk5*Ko+Y~JS7cVNgARq!i2vZrqw(1Dbm4qvqJ}XD=fObdw4nc;1LVOo=KfXtd09(%k&+gmh(;Lo!4~c?i&*?P5mqo(6!N%SGGLzt z-IU;9Lp+Hh@P^J74}^u|AYszI)bNgI$sWE{vNEn@ZHX)7ojf4Gk$e>VnccVII~h^V zzKq1?%&j%UoyVYagAa`aWoMzhbkl}yW3&YQDDam(v)KS)EMVX| z%Wk(kp>uxY=q33S3&Tl(}^Tpg@HMPr;4WfCt^Wj z5MHZ%hv2JirUAm^&C*$v(a3Dcq2qu87R@`{nGt?M5-v#Lm>3jaH&eSI*gUO>&)48P$ywbb2#Gp^3=N{m8}T7UZxo0 zEjB&h?oe@lZl8+}H^X}61q{A!pWp1ej44Ea>gNzTjD9eH4CjZi40wT%%`p2|VBmsP zr9=E7CEc1W(nvP&hPg%)hHR@t2nfZ4REhQo#uw$uL#c#_LsIC^8|NadhHPVL;%PyboMY!LBzs+tRCncTU7dI zUR2sAnV39xv_5GNeiZpH{ve*K2xR3_1GIRPijcEp3Do0)Y+%u$mN%FR73cG8o72E` z!R)W>3G)P&U7DmEXMt#{9dJD;U#g9J7#Yi6tVmH}=!JME8ECRJ6I%S$GMtYUPScS6 zyyYBz^D2oTQd0uRWzJC2U^Z~ts}VS)WK!$_993UgP{3#m2O?1`ksy|#k0r8p63-y+ zUiZtDpyM`|{7}__fP|3@2&PBb-c(jHuxwQ~9RwIfNQN*x*jVbGAEw+o;-8`FOTV@T z_$0wfnEsTJ3{U_Iq|r7O1TM+e?2WA?h*>1Hy+i;I7K#4{E%KNa28g>Q`k1ALyhyd7 zpu|5J&=E35Z7k0L(3W#Jdo5yhad_5#_&4Naf$cWrvQtODSM0B=dBR9_QNOhQ5MU`k zzSD_pMj#XBnD$I2pbIKP|r&T{aQK*(Isl)A?XznbwPG$^W&C{9tIpIwW2h=;|EHp zi^C2ys^M1W2$ew0d~=mI=G>fzu+JBiBx~PCZF!) zJ2+5l4|QMKqdXyT#OSiT^Nxy9PiQZ2#T>13(420X1Nh}C%N&z)ZGn?QyD=0n6}}E5 zVhYRU3d&;&HJ*!0?(yTPb1I27x#3-A!knegU`Ss+CD@ZEqq-A@rgmlaQ`Lwtw{-OH z;Um%*gb#@W|3qg_$Um1BoS`SNMoP&n9F{rUkd?02G@a2DPT-Ml`#MM77NDk@Vap>e zxweQc!$NQCDESgpMo(P!9~01oJIEtOtwr2B|9ympZf5w1=qsXCpq%v>x{8}#+8`DO{DvEdAeg(-eMm#!YDF_PZgX?wp2uWLLjgkhnx+-~9Si!h&I7!=R* zrAr7OFpH_xYaB=0Q$GIf3LjaUo0qiWt9J>$@|7r;82~9E;*@Xck_0~2q=0v{dNAp! zi?*w_)b2Wkd~(Wn?P=70EZ+dD;FEDxDkQ(xz-{d^nD`q zGMHiXVzP3gZ|T!CR~Q8CJ)=3%wIRIV_EYibjh5fvGre0b%$(Xatms>9ZcEYg=x)Pk zxj3_dYkjH=a40Azuu@clouM*y=g{_gJ^C&qa;E7P{@#GmvX%t9L{9Yt;JZF(ZqU$@0A=gG!;f7B@~;}UZ!QDKyF6b~*z z)n|FGTTRCH>kff1E;MT5JM)e{<7=&?$}fMJ0OM;pFUK2*nf>v%zP4trgs+0Il`E%{sIQ3V9NW<^{tzhLZIb@+#4Nv$C5H3FNQQCt zb~#$NM-^K+-j3b?>KO(CNbpo`@|923<`G6*4A!dN7*t*uXPO36X+lmxcXQ6Q%8)j6 z6=jhnMV(6QMPJBR6%|Wa$HDr#w+YV_S(LF3inMqh6`~V(2#c>?bspf<^xbG_9^?;* zM_v|{z7O?Pm-a}>95TCM|LL5`URT~-{TgDD4TnTeB?R4%W4#s>x+gwPMb>7eIs+^O ztMq4QM6#Y@ke8q%zRy3<@M-8-LTx9NHLh3RL0uk0-0Q{kcNy2s~(%Y1)A9%SU(VSvEDclr>c}@%iL>9LOpUsv5f6F$-q0ZEf#-1jOPH*WI)TGe|taEX8$iGq?u<>`3 zVKf-aEuZ&)b}?kU+Rt=XVe`V=U9M47t~=vUowHC~ycMZKD~f{JYN+aDj=SpahkXN? zmGfXm)E~c4$FX~t|G*eoFfiox3<+~m`pe_$?5zCop*5L7kufy;t1w=Asq!k-G7-Mu zX;tb}i9V~tZL9KImszXl%v8At9|#Ey8(bwcS7_sLtkf*M7dB3hE{kiwEk{{mKp414 zUiTP^JOBE8K}MwgwG1Sy(7@T^?liQ;fqu{yd$DZ+Jssw=)rmJrm-T2?L%je8vF7qCN z+pOe~)?x$4!!f8z1qiRRwTTUp(Xb(sqtM~DM_II=d3ffc0&;HUUQERFI9<%r#wB_I zX5Yp9j{7TRc&LmRD+V;m-pq45o2-{NvZimZv)`RE!iMzUKm4ROB$d#{Hvj&A)c2qD zzY!x7=l=m683`Gg*%|)_NHP(!a>4EE*w zZiaJAl zAZiLoz~C`S@C@Xme)$#c#yboFIST;+Jv}`jhzLzU$j8L9(-3b1fEqs}R5;OhfowlL zI?xY9gtOcgurLlF6gA8bhET=@tV0+B_( zNdLn4Hn%VYFz`^0J)quLc;KaESYXJSLH_T2JOzLptR@g#;O~XPof`HQYb8;ZavVOs zJQ%pl)1_Ah0Cfq;_4X&gH{>!#;DZ?CXNPkTQFf+x!|ve)l|{6#t1Dl#!WY1SGT&=W zFAqxy4jxE0Ly7VW6@Wa(53+v)*6`%dT>?72H9G+2t`T2hTG&l4! zPCUK4a|t-V5{S+x_xG;yQLSa-f|N*=q`Xu`l6%q&g+X+m-&l zm>Ups&`}a;@BMa&VQS)?KsYn`8Q|*t7EJ27Eb0jb4kF5fl48GHnghQD_wD^Y>@OXk z#dz|~amfC-2-+XKn@X|f`z3P4hbQ$!D2xBCOez zwWHsYuh-qP+)dHXoBgYfKRdj8uF3zhF20a85hC|N8Gi0_tQBbdyh+8r(`w>$=;|UH zhkYoE_2Opvs^E?^{UDI3!m3G)yhO}Ji+vc)7*XG4`09(ljN_D@bwL}Pg+0jMcqRF@ zv*Qp;=6y;O<&ICKG^0>0BJ6We;J9)7+R-i#2XrLwqX&}lJ{E&k{2*C!f1y_y=4M1Pa*vfZ?4xw*<{xdS5~Ui=F)?1TN(=1wWzy_JPU z>*M03QU}IVknc&hjAfhSt@%6iJP&-hMaWvH>trS4l4|F%uvE(+E&_z2jD4<5h{HW=^`l({FlzhTO!9$cfm)6A*NPdP zEN&mmke#Qm=ae2#X+fK=PAUs$D*M)Sv;g#AEC&_%7yoz5DT0#%rE^$B8!hV zTpct_wsb9RS>t=EV$0O@sJCj_72{RPYTes zwQ-FcFJG@=If`Lkdv2JbFZrji40r9tQ#tJ6L71P<9UI${Rn-7YQRTEHJBR~Lr3U$c z_SW-!`h<}?O!Eu4@!1WI$MARtnK_kA(C!*nN&t&aV`lGkdvT2>Lvg>&in?9Z*&+UN zq&r>S2&!9c(J&Lji!}M)-h`tV_{h8?D9}wlvmlVlau&LIo_xYt)r4o_MEJ(XqE)pJ z(|>fx^kQ2=RW-5|Ry`iXs5V}S&jpEudTFIDq4yV|z@8(RlID>??6188GJkEfJ-_8? zZaV{#ZK3+3kA1|2WGCfbf?-M4u1?;ek((09mA{QQt}kod=Pq%I3I|_hvWoa9h0z}i zsqlm3w1%IBk!^YH%aJX39Lal4y5l|Ix+E#@-^qu}#!?b4&(rC%amYSBRS|aG_r+es zhCG)Rs{77zNywFRookCpH(?=?)KNEnd62GA=OmtsYiM+`p;$PORd*cHtM9*0_I4_C z<3**t^m_jzu4Kq(B>j1TXGUmxlm@nLgzE4K?7RfV9eH{`Iin4N(lTb(?2@J5jE#28 zsZOtnhiJepKdEsB&q56raQ;m?!d)NOfrG6HUc`sWEdF5hSofb7fLwOA4%w>T@35;x z8s2)~6{dQchDJJ-NeMh#Nw#{mr|o?BnM&TD<&0eqq-G74A21Nyz?4qwMqBK+4NN9~ ze3yHcd82h-3f_*=@6*r%J?^Sm$xrDC0 zO0r@!vS7K(d$cC42Hk$#8TLuVypdEi2tMgE74Hnf4v@$S z|G4HL@NN4{VI}8}YLF=iuM50`8MWJatYZ)3B2%VRsJ&@MReu1>IdZzgJkC6&Scy*Q zS6FCEv+5Pzu$!{)Bn@TvoV3#2-XpX&dNQwn^~6 zXD44aR}|TVInc5BVn;%XC1@;n^pVVzY>l}>+&tjaO_jWq<3aOaTl7YxS%-q(y8IbQ zjTNI#^Z@FK;%x+XI_X|nYGfr7Ux*V^jLtM7b=PT#v9ns;k>8&79HGv5mQAI0Hi{f# zFy%WRb!ur)N157y)jE3W)8W&;@Vw0V=a}kwz+`c;7jbmm&HexriJY;{8U6BxXTO>u zWaGMIuT&7WL%SM1qGD?KB%6eSdZg0;>r?VT6-~LJyvJ0o*(7zCAn}r%2c<@NASu4z zfbDEZb$Rcd%uLh!1Ki6b(iwr_N!JN=6%91(x)%Rlw1=^VEteJ$^X+7-Y6CI6#CbTI zCxemRpE5-Ku<&pAtCjHqCF3~1*m|>c)N>6BAxODbegw*QD7HCENwW$~6dBm({8V5^(K;09;-#u-l0ak zcsWr+tH_huHRX^@c=)h`Kf9ble=_=^$qwrcT`U51!}{Yz%k@5Z$j9jycVwbEy`^ba zcb+rR@uK8n+m|$He7$#g&!g7!jkn))7V_xzk?sjktky>}bc^tIE;B_9k}&}ld&TmK zTwqO7m65+>cYJefywJpP!aR@p&9L8RaVdH94DSAp&S~b7A7=0X_+8x8|BVlxRsXo+ zcmcJJ;{*byn-XP`QqK)hGI$xDFu@WrR60^W*nwkX^zw2{uLeui-^ZJOa(&JaW1HCO|lBn~<2wo-5H5 zckpDRFv3Fh@HbM+A?GqD(AcG8Bc_?ZLm;cga6TwdpNrKq@WAVH!Sk`g`?J>enk1Ql zWQ@CidrfmaJ`RVM4-eF+vKc3w!-~)gN`DrsSW@e-qT`KLHHyJ`n{?TLODY_SBStGh z!SqyzW@~AvtKdzmT@rxgK0;R_?&wat%#2B)KpS~Gfl>Ju8FOkkG_v>#=(0GEC_)Oo4m17 zi+b<@`rWTMV>qhS^{hICBoX|&3hiKu@z&UL;Eyr3p`^w7N_3j8`&4tPG5;Yw_s{~5 zQe>mpa~e#1Q*<;bkrH%B`Tds~Ili1d&8zse7CVh>=hki%)`IFC&{9`di6XvFDr$2! z=D8NREtbM`jZr|Bq-0#xQLhaiyxX$YTU5nRLi5N>4go7%Zp7)j<TBc~Bsm!BO~4CVcH14%K#dmbM#b2^EiKZg5LtYkBoq_ z{S_^oiu~@i)bmZhbP!KFrz2;AY}2LlQ$!U;Ca2iCCb?Sq*;&N&dL)LLjVd01Yw`8t z;}gPS;RxJ{mkF+i9>(@ORQt@^peI2#U=>%YJu)ZV>a9(}hJ9hlo{NLNmJf3~9{o7+ zALjg}SdO=#dm!O?5v@{I3dtnn6SAj|tDQB7z2?#<_obQygCLX`0fpFBh%^=q?>84% zG|W4hYz7kd}1CuyTjUnu!IplHvyu!i)LoNvUDy#=sSo}-BOs;(%^ z*fBc$*)$Nby^~wc`*EN@(EV3eHfIq1vrMyR#no}HaIW1dnm8(%Sc%%b)r`vXYEWy-wOL!uxS7#8t~JbEEP*iR1ZuI~x5+Pe;!IhM z?KBX5v0y2W%Cfo{C!R88swa_;%Nj#0VQPi!{25E-&j-#LAK^LnYGW-s#P+&`GfCD?g6xvDLgU09Qs>|89YsX z@KG$^zofxeI2vVr>UN~9->ruPGpf2yt44{HtXq#$MX?h}x6MS8NDMnXRE^R|H_~ncHSv6L+FG$dkBw0k zJJCBA%)m(nzifFzs%633gMvdZ{e`NKYRjS~3k7$YF_?Q&zzJO#roj zhhDOQC~|X3{8ib3Jjw1-Cn_l9?%AmPGT8hfJB~(?{~}M?c*oRkspyIcb%6}}<;~Av z>ij_2tcRnQ9mr%A*tmSNpZfQQd4HkaAZ~I`tyKD^e*9(WpXa31FSE)a99WDnSje(s zPbK2ehww7mAI^0j3RnVZjgMoy1JgqOT!CeMrO zNnT&2>$q=J*tcgpb8W1T_6OIx?8mq)^mO2fw#I;wq#~SNY&-K7UH5Gt?Bsf0c8By; z6-B~;kmlApF{1lYvpKY#nV+58_H$2J>Ti^GrqE4xR;~;h-Jla!XUzthWzzXm!^&4N zsytl_xQ8P!IYu% zxwT@ZYZ+dQmU%5hiUhr@3>_)uxdG~CWG}At^`k=#=)C@sexjSK=Ou}G_XLy%4I-B> zm!r%C3b<#dCQVxOm~?P{K5+gT3=mzb075;2stt6fh@8cj2YG^!3bIre!A+wOd2-uixbAcf4Ly^h4mZ$LfvG0+Td05GK+?AmYD2?%HfoN)#V@euKW(vNz$h73JMs;Tn;0DpF(yi?Jf*< z!}+;6Ip_!DUdjKeF=CPat=~>xH#cDdWyupH;Q5JYt3|n@=Xf*a=@cnnUrIl8PS8PN zZ=M5@IZ78b*OFmwjQI$-JaHq4L&$OPCq8=owB(3&78WTdFFTaDYl|n>yDrsVkD{+; zSmpfjb_MAcI02umJ23$*4?B4tv+1&{a`_VcBm)iqZ_3Ln`(d=39(M+PG9WXJcHhz1 zzHuqL{CtgT+HR?-!Mhs}gFbgoJ97e?bQf`lx5{Dq_I5>jxl*uxi1fX65{qFMt6GH5nj7CJfg(t!}^!9;_vw^%!o61iMC8@tk?qqRuUp79+fcpwJ zr?f%BImce^8I8)pS+n@wIxmW@l~#J5E~5fgt`8BT0ls6}(PX8c&H3(8#V>p1t(DY_ zezgXbU0y#{=v_>h6NJ0r-CAVe%1Dsm$hKdfJLRRm-d2cUdW@Yp;niU3^dacnMKu}1 z5Ar)&(a&yrv&qe8TA(0IW^J)yLKLW~NQeK22`rww42%gC*pk-CRA0PgWY)!r-Aa|8 zwwvFmk!4>NKLCw4YTKyZ-*=I@wrrhe?D7H#pY>U$rA&aQr{apQI27z)}Qgzaf3yz#fY*#9m zU5$k?d`9f^mu`4TaZBKhO+VHyN*fXjUx3z$KUf81ooY z%)}SMuq+cAF8?JiYS<@8r!3U^x?Yiv8?-&Bh`ppMfx-+QyQ;uU>PRWIvb(2~qJ4kE zMYnc;QobsN(BA0$bGMQWf0Oa?gA;>nXQ>)-=q>3+_F#5;D0&+?T+)2A3?+NwGa42J z`e|uW6^Q1g(7$qL{P8b>=4arozq;xAyHDm$brri0>}QD1x;KSQ{%x4B;)*0V!bB&$ z69;WYO`Uy)$fsf#ZrNLvd-iNbbKO9xn@sx0RlG~GAIPATM3-h+TcIP~elSjU*YByN z^DNSqrEw&WLQsi`xIxaO<-@|bbpgmoNh_fL%&q9uH6kN-#>y~4YCg#QQV+MwtmV!+ z4L)<4!foniXm`moI6Y^NdB?RLbbWp4#BZ>0qUDYCgLWkLM#c8d0*u_>A^SQ(p3MR~ zoEZkOHvQC|9x50==#Z`1BMgIoQGibytwJS$b+^M@in# zte2UYNU!6rbvw=dxpC(>Sp4ol>67~Jep+<#{#f4`%^+~4)JBYXh?w|0sV*c%jr&9T z=?|9PB|>}!=nMJq2K9ZaX|K817IVOq&n>d|iv_boZ5YI-Y7k~BBo1A!q*U`Sgj=8N%UdKF4S@B+ou#YP;{vGGqhVLQ| zpRp|~CRuXtts=9UUtd_xS4#7|Rs=(y{gZ!i?k0{$P?3C~2q+C8wfRrXq(E_8A^Z&D zO08SizpRU#x1&AIV0T0-7vIEH_N7GS=MEH5kN}rg<=f8RhHE&Q_!by76QEm&V7UEq zL;I)qwLSQ{^t&*+P%(_2c|@oK7=vjq;(c$&8GGYvZXF}+;4&>KsPZDH{5)T>6@au3 zr8C}ZK)=zd*S2m!#mppIkbh%ropSSq@gQL?8R@K%bx2Io{x|v&R`=$sjTE2sc}GbQ7%m zgob(aa8{P)LDqh{S3HCP_ZH&w1qB}|z9(wQf8lF4`ov*Uy@+7;OtAMX(!eyv32DQT zx^Xo`(Bh9tT>~-d8mN=({zM{U>Pu~C`-qt-!XY_MvGe8di-f1=gZ%kUt$yPnEVTdl+n;p-`sO zXmS>;T?_%;_-;HULtVIHIg0~}be}p+|8z~Sl)KW{ZGaA_;5|s|RM50s!P8Hv*+~c0 z^ywqlo^`^z>}YjS2ldW<_YmniG9n zmUa26%|&&Oh&kP%~IDf;AOx3!F?Qr(qhIB4XJm^( zdcWp*88ItiPm>@wxG~yfmqM;?vWoMk0x;oilNsw&wbEKzTs{HcX}7j6)YTKPq?ze| z@EZ&BNBy758Z+bnO<7~%VEZ2djfs$*nfd>!tZ^{2{J$$}tq{tIS}3eheiF9C-C%!; z66ZW`y9DU#)+8S6-{Dl6jaL zO=qS!J#(Lf61V3>1jd0)AQVE~^S}fG1kC*+a&piiA%Q?d!Tbdb3}t1NC@0_^Vsq0L zaRUT|4Dc6z{pAG(`Y5a9(4q!Fp7rs8tQpvWB*1`>Q^6%AK>dLX2<0yb2w{of2LP}efjmWLjWOzeOGSnuJ^(S^8SzpUSAvB*wuv+EDb{KK{^Kl!7e%fQRt!c0a_c} zXGgpW2{L%>-_b9_S%ZgpTjavbtN8~8WJK}h$ydY+0xeGTCtkjFml^t-K5*NF6#)V* zt&@8QG??^fJC_<2xPJ7eGk0z`^zs7u@&4|2)FH@&gX0H(upfs0-wE*ZQ-E3dPjr7r z*zdJtKpv2xfFu->BqPue3ebJCEBZ&bUpWEp0|n&A^~en38A513aLgJbp})L16Y(@L~U{q3H(jx%C&bb`lHnJwpX(6yH&^y=vPOYAf%Wctnb^lgdaQt__|&% z@7J{FSMvS0@cowhSFPmNR{TQO#>V$x%NO{E-@cA}Y5LX{ETu!2vI_P|U!BqIi(v`m zA=TxX5MG|)^*7ogzfYZ$(w)PAiVg@F4J_j4IFxufzXuUQm~vw0onhnanEjKEgS`x5 z2r(q+r^m2PLtyWBsE)ePby$}~f|mUk+CN@>JpTvx$QCC6ZQ1uV|HJ^n@vWNAfYBZZ z(;w&)$q0eKG936zP(7VX!0WdThmiCPSlB=bXe}KSI0gWAe;b&R00z1K?ebkeR0JfX zF4!6PdkpL!1T1v-3lIes3i|~N0||}!rVp&;F+A-m7+BGN#J=nCZh8_SuI2y4!Ew*= zzvNzmg4_qMq4;J5u1|`zv4}b4F3~W)LsrR+?QBhRxf9X?6f9)Iu$40#G$a|vXERsJ zm48`)6kA=+m(^Z)sMJ5|ZhKdTR<0;KNc&29&WB7=SzNuHjL4UN)821zMY(5~BVmnI z&mD#cV~GCp7!$+?1TN-5QHb_^kNm`z^J%l7T_A77Z-4N5Kcl&KG)*a)q z-$0@r&+xpXGF`#tg720v%uA0hMm*3By+*?6#g?Z@+LK2^B&mWroa?ljWxki>HVcW*Tz#wmSV zSz(Yqm8|o15()mfKJ0Nol|St?Eatv~r-7*wbnT4v*8357CIu#k)2DH(-^Rg+mta`K z@@zeMybzcovShVM0F@2)QCMCVq`clFQfH5WtalYP8(4?`aDZU{52?c1itSdhbdebG zEnkxIY4b<~(ENt~ex!PtmI#KmlyxH8eJ!XLIoJG$VTXD{YtvdBqctNe$dE6Ze`Fb~ zrv>5%IOX?VOm8Uug92hC`&v|TC>_Zu2wc#I?j<;BCOwHRYGc93&{ExR8Lf_l2SY<` zxfJ3vChJCnF4nGajqQ(0>FZsnj%=uGE|t!+2lSh+;9JcrUt6n_d);(vB+f;GOmZTc zRHrq8ce1l)C{F=b9$XJiH2uIW zyffj)F8w^UUicxm8(I#)ItxB*e0}kE-1fvh*~e4*3+NhC&deNf*gj-{=4%d9IH26w zbwmWF_V9w~))#i(sMl0a4J%}#2xpnDwllw|BPWAEWeo~|O0=5aT%FR|=MTRT{nJj;ockAFK#uix=(ZhCjm^c4?aUahh*;W18OIxN&J3GI!jYF%V6s zYo-Pu>Nd%qLa*S#m}qlMGkKdrKKK%NWX6vaQof8^`G0ivW}i>q+lU90G3-WKd>J{H zy0jU7e1wS;9R011;nU;e{+SPmSA*>4?On0be6k078C;_<^$^YA$Y8}-sQ*jbB#ye- zK0fdjk+X99<;m@?FQUL=Ve}(t?{=ya9>*)EJk)Tgp-=EU@()|iJBhR>{QfD>iJ!}2 zo#$U;-QNy>=T|8=3NllIbEU?wnK5JE_jHl`f{P9e>Knimmt8<3*B#aubM~N`uc@ZO zJI6(v)(T(6tS_}t6g=)2#9d3jd}wIm%49@09dwYLVp$mMe+1=&ekd}`(N~u9+g=>1 z?SoBp%=bzN9OJ$J*Kj6`(pr%=6~p883%il2Pcc#MO}{OQ-M>s3KwxetOUO|q78E~n ze95e>5q7+H8RIzuS9=Tls$tnE%4v(>**0&us3=!ZP!NOa#jOaG*1B*%jd;Q5szWEO zEz-Kqj!*7oR<*mH`GuDSq?^~>y+PINHM&@LHZqdWPKrN=ZM{JM1XKB`({r%vaR2tS z@=;u<7N@_Y+W|umsPlk7ztz;GIYkGujW<39HO4IrcI2O%cIwh0Se^FoxK~LHk2<^9a@*#z`M(jJ|WARlsf0cO>^grg9v)l?+)wLdJW-N;T?$^(?QIxwJZ`}Xa zIQ3DurQ)aCw3%K`{unm8l&p6HG-PFV_5p%b9@HC$0TGF6kO^652)d+UTx$);=N7_v zwrpR(T4XVq7Korz2oO?iV;W4Z@!l(aNpNa~`DY$at|ibF}tPjn*n9sQ#|Ggi8`Cl#Q2MSOyv z==1^cW5|r7sUsYGl(MhD<(<3%htgfBadtzy-sQ!`xjff-nC86jtVi5Mpnaq9bXsZi z*Ji}=N(SNzt**6v)Ie2HZ)N3GWD$@O;C)-)g{D3HV8wC@b!tudKNV;^FBCUQ2~% z;UQi{Wf+|8DsA}3Xsb*CUkJ79FqQ7cBdHR0dC{x|UYjvGxGcycmSZh4<$&&Vz?Z;`L;j7@`ehJ+9Nk^)Zp$|G2@L62>_wrOO@MCqE zRx$kqyjJ{)L-Uy&@uPQ%Gp$75;O8Lmmz5?r1of$D)Sp$lg75Hn?NI1El!mDpA9LQqq zcBqJ|sVUv7O|4|K;Wxlq9_DdfZOz4|ZgExH%HE{l_bKgdG!$^h{q7@fs26*XN;~tw z2yX=T>FEQXFa|Qsu1t@FK*F={g)Ho^19_M_an-2NwpybXk)N9P`pb2k7jqXe>Nk_o zH&wxZ)W^#Ms(88sSvY--y!L|Hxr_0JaNpJfL=7TbNkBPNTq?&Lv^kDcmO~tV++zB~ zwg8Q07}e>{NBNc;mB8`F_Ob#XXPT(v%o54JU=Q^om57&8r^4AOu6ajwsD`O z;IH)OhgmDiUSa~~jl;&fKH30n4}op^W;#EwMQ?y3P@9iJz$8@$=MuHj5-ZBKy&J&k zZ!s}@r2^)mvsn!eMBL(P^0y+H7MF;{W#x2`fLfkq+)dHJ>g{sv_z24pcvWQr; zFjom{YLbuF6~5subO7s}H5iImtgZf?ux`1v_~!M^&8wrR4qsb$p-KWbOJZ=W z+xwg2acEob4SZgWa@x9 z?}N&&lNYb($7IUxTHb_)g+pt?4urI(*IpEGO4Ouv85zxra|zT9v=#$N#zYZJy9Uc~ zB~j*M$YG=mGn4ZuK`1{@B&1X8*e3GZazSeWi@(?g@ij;yG%}yg3&|#$xs_u4woqI8 zpUMlyZX{H2DvR1mrfr`g22TE!y5>%MFq353Y4gK9-3^?2Hk5Xq)AU6i$F|OnT8BrQ z^Vn?A*fE9=%1Si?clRdX8(EL05qAdbJW%Cy>R%o+%o!2Gb_+>T+b6-NYm!IG>hP zukP3(Q>vz&np8){ca5wq+>SE4j`l}j@4w{pBh<|}NI~BO<>{IjG(jDN=exV8YVJh& z`%gtAmrrnsEW_muS*WA?)p~>6Pq^(})(7LErX(|v5yCHa#B37HQzw}2V@bn#`oY3; z^&@EVbe6^ekflzNNKGr6DQ7U%vCOqkq%!!nwUttp`B{O!&eY4j`-i5%>7H4weyA@_ zzxKuQgm3lIrO#IqBfocZO~NcuOck|v&x;P<2isT^#sT=N*~h@4#=B~oGZqem`^SvN zs#L0we&$kogc_#^)pd`z?E{gp&97q<1^11$Ef93!7tG|Ako|J30NZ=eOdZ zB+u17<91o!ad%Uqrx0Mx`b!5DLsb(fmT1QX$#2sh*zKYs3q{r=_%b<}rf{uw%Z9cs zd_h!trp$0_Lk}|fUeNFp96zFl*=fzD}b@13>jI|driS>C*e>k_SDL7TmBZX z`!wOSu)zo6fVf*+?IH-%(@Eh*)8(9fb}cu1>qtaDj8Q34)^d{s;laQZ`Ho<}KOz!7y82?GX;n{z5`B)wNq4WjyPl(iMS~8ky|sSgw`l@eD7h|XL+f&;_3u(TVlVs7`=4Wxc|U&L6>PBc zu*=t=N<<>J$Br!>I>o@9*EjnKCy%VH7P9P5zyJu`ps$Pyi?RZSipMr*ds|__>m3H8 z*z&`t&P|${S9BNzMO2xH8IUGPw;BW%fx?#j8McvbV`;LkV(u4SXbuG4Ws^Xzgv%9sj{3n zk})RgLCV-WTZ%LMPE;<%=i8Qvk^Bu;@*FYh$qO4im)u(7P^;)si0`AdB61Sf%`i396$sTAhFd0n>IJEv_wi0 z&LH{mL$u35S1WQ^bHbg8Lb49(5y!qjSVXe*B(`X}s!=Z;3Nh9QJ52$%4_||B7w#;_ ze@L}%u!5$C+z#r`bBp-}6Ya|4|BS%xlXu-{3V*Q!btho&+nzaV&{pZ}$fQb_b)dJ^ zCL}!u#VY^g;J+jTx?JVs9LY17lxfH0c;5U;mcpYMJbJM9HgSfZ!|-iJE$=%aVMXd4w`Ny#X7pN8H;ecmfJ8t!>A;-9<>Z=3ZVY zoO(QO@2tpELupdD+vdEMZ2hLGffc^T%5{a$*7N6oF?LQ{f&f~QP209@+nJTNZQHhO z+qP{~+O}=GYhHSK^|}xJ1Lp%y#NJUE-jTjZdcR?tlcq`skkUVF$DaaKj0e)$a=pUd z_h%y0?PE_FKB#mdHm~8nkyphGVs{dy{OotjSrRomG$JG}nO2#VQ~6M#60|Hg&hdFM z*oOpzik=s8Z=Mub^ z`^Cr|Fn&XuklUClkaiPwJ0T2?(38}L3NIGP^<+i$P*@#QdVptGz1Pg0#3JoXK+iKa z(CDA72a|4OGZ7`!UD4nX!|X10H*Vl&kdbcPbu7$OoY|23wI9y}3uBh8&JiDnOLZ2N zXuh8DP9AScqG(ZgCGaQ%LX^e578Q4^>RL6y)-8NTR_>eT4`b||Q;xWS=l-t2b3|+) z1rFsjR}#Nf%(a5nCDIqGR}xFr8>{0pweDF2W~$y1+lD4-o&@Jo*D@FJDkHV8;9u>@ zCsZ-#gXLhoo3bI8ti^c`kNT8dC+~x~!x!?ZPQVMuPl=LtaS^n*AMT2sa{Qg;YHk1Q4 z$qsIocaHFZ^jo+vH+~x778on}bWD8lc`%G-doqitON%0KAKTzSEM zTn#YCo_v2%x7~Ueo%Si!vH3j*7rNehX)fd_8Kf6rLI1(xLF$J zlV6@Mf=OHNJB0G(y6&-WKOEIsG+>jmO++2Z83NP0nL#fdHl?pAGCMmcKLI=AFvN%o zcI~t?KgVB=y$KHzI&!+rd5v&tsHOpI_Uf^yu=T2byNUaNl)x~q%x6Ceat%l8lX0EB ze-fM&y{%RD7|P1fo&>k*-IgQWgA{f;5`4V!hq%H&kUlJzt%10{5RZVd7>w%hddA;3 z*@~G8-H0vsVjE=IvX_9hVBUu;Q*6*(JQLMG(pC1tfSCEK$SjmI`nw$RE#jai9&<`T zDp@ggG?7>ZqO+?8FqfWgb(vrQEv`-N#kpxBAkOG{KO&`EBWqwt@#)n0{zH#&i+7F6 z>)oOk`DQ756|P$g&Vov~UD9*sr1npJz-2PRw`KIAg+Q*^reAo-8aj&;t09Mfq`x}F zs}iM{?A3jk9$8#~-01asn@1J-PEg2+ODLul-F+t73%v%||9mBf-hJgK>aF|aeQ<$F z;22*_1^Px_P`bHHB3vFMq8PjPD-A9qc}-A z?w~zW+f9xry^2bzzw}9P?q*8Wtqtd~Gf)UbWxME3opoM>){$uL3w`m`u)gVc(&8CA zF}1>T45B#VIHxkz_S)&L)}XM_Zf`%9=WhztB8fyUsdJm+u0J6EDHPf} zXMiN?=WL&Rqe_Ib8!CQIh<{+7kE}tLiW* z-Y)Cq^K+>`89@xT7rmcEB7UM2;iUhm0 zgI^?SS{5X?T z`Q-vxaw)f6YFK#WFHH%=SQVY!I09iVHu?siyhC7T@42RwA2lm-3^8P@!#z?H2TDJ$ ztK(q8?fpSG)gB9u!7>Caj33uzx80<}L~}nG3Ng{gNIz*D0SF4EqCpQ|TfBWQ_F3#F<&I{-DadzA}#+ zhbopD{#%ixpu`H2rh!pqY%lE)l)F_aDTVsoH)0h#)Zg2tvK#KnqnsK)JoFg}Uwn(8 z&G*prn_9#!3+QDv+Qd_yv2URLE{?k3vki$OR|f4&VNZiX-f5jEbCZ{I70y4mx9xINwCX$z(9A#K_bgP9T?h#VKQ)AQ3b?`2xo;UrCwI*NU4z|t` zA@hC|C1<~+AJ$=z!|vj-!{yib@bQTqrYtD(k@fe>!^WSq!;xjl^wJL>Gzr?`J8icr z?xuy_{zJO{+!aK5Z4zCq>D=_gF`M!vuCAgveE2NP{GNI{dAsz`r#5t30^dhIC)Lj1 zd?%P;7<5s98X{cLX=2fwyRG{(QS*xk6Em0ncH@+cL>%FG-3`fI$p?YDwm>mD=;^fE zF>A^nIwd1FI~l7 z(SkZ$N$%K)yQ_E(iEZq7u2*~3Kv#q5=V!ZM06PnArtx*Fy(SQRPeSdu1bkOX>v1w| z;7aUBzU^fR^VG>axs;Y&WqdaBj%M$+3oauka%FBQw=$VZCWEMX-AY*B>p$%szf@#b zFBKXNrfeY{h;SFZoH?kBEoJE`SLs&OE{Kl93$`!s$c11p+pwu)fLfP~ZW87(7xV z92~_C9|`ji+LMQ~lI^*jBKS9E(*Xox-qqc271-LNCv)d6!|;5 zh7!u(i1d9Z1$PbPr(3=5|2Aoefh<7pzor>Li>Q2n3=2892N zUg=Z#Gl)wo%S!_QIDz(e7rgwti2c^y@5?>Vr#}S(=u0P#?oVq9p$@Qx7Wz*7;1uRQ z2tdIOukOF=$Ms`@7%%{U&4B`1AG$t(DB`C!*3YoX&u02=Yj4+Ygb?bb4{)}6yK8rX z;kizLD9h&;_Pay>OYC8!L~C-xkNmqyP9OIK_I4i#*bOvD@Q*i#0t+|P1^UtW0}k|C z1wFT0Q3;_%0s!-|NPCj`v)pj12eS7jg_G^?hqfqWs16Nm|0Uzd9M1p|>EZu7tNfeu z@N4u|NA-(6{@X=p0#9DHYa6@!^E(FX5X$}jh3ZdO0}e$DAVVSw7XAyz8v2b`LpB9= zv;VcLtAYYT48j?V8#>jkPskTPhmUhp3-cPfe%7xb|H+^H9)$gqn2C%7xG2~;;~==jXej)xdq|HRny|?KDK8|Dz}DwXPCx_X-`*kU9nMfS zralP3&mfx5#&Ekk1$OsH7*8P$1;FeC(2sU5`eZddcmUuV?Vdx}x3>#{K?1WE_8UeC zwCDC_^K+l~Cqi?h*kq$AhZD~k-+ENIk}(@zX1kpaq`_C;XK2%5GwP<@pp){By;sb4EhX7HMdr&@zWs z)B371f{CU4bRfDZ0d1>|?udN&Mc+X*`=eRDo>DlKK&#>I)5RLEKKh@z?Sj% zi*7R(GHE($tVFJ`>nf2?EhZ05q-4#8x09*9AhiN^uP`FH&;Cn!3q0BPL%{$6i)$F0 zFs-U0!gdC|%iuk`FhWmT8=POMF5o_OvDZeI^)?~KgJFD{Jq`L;GL+XjZ95geB5%#t zbZYB>%jr$xpPNSDi|Zjmg*nV9ual5L*Y}+> zvvBeUXf4AI(aEa0m@cvB>xQbR1s7!;v!M)v2ZoCZ+SwR%H#~boRZu@96SrIxXAp$;eQzE(MRRV1n!UVb0 z>iMH0*GLdhG_C@y_cCJ}t&lCILOv(%q_*^qTo=IJ|G3EIc`e=!OBl#zCpoi(w@T|y z$=dl9RR8oC$uHn!r~6xYvQ>rpH9v%ypTkZ*+aC5caB*WTZTA zWd-QkW8AlU$w!U&*PUUr;S+B2>@Wgq1 zCUfm(Op5N2V1S$Wg%3YRPYB= zWAt=}Q%zF80;YUT6veWXFTw3A%?D_;lSN{i%(->Y*fZ@kW?Wd(j00<=ti6>?*yk>D zOOoYXO9BP$AdM4h9(k#*Ya zLesnO*B8VCl!VqetA(sn1PL-F(3Cu{rZ=uD>5KH5!@8LJG<7)z6UDPJVow zvP?-Rdk&f4*?qHeD4e<{M|!c1@f+^V zOtXH(KLzpr-oY%8vU2xta|M^!dp}7g6%UTL2830BoW`r-u}UVNQoPM8G3U}3Ub`2a z%5)tST>jl55(bpFu`x_z+v0^%j?o>~cL=2A(c=#zteRMV!sPGNz_y-NXxpeWI}X4h z4lW*8hB5FpB21m2+4d(TSJYX*n-kq>KetArBoE-(n0xB%6=Of8QQV2%HO3DyFkf*j zH0|OdsiEVXfzOXrcl}_0kaqAWG?%u1T?z{}LX1_|%o=ELTzsOuh*~Mw8m}Zi3C9~l z5bnA0E|w5a5K@&vlyolR0tJE9mf1j6Yb_a(=B3(@M+e9@z^D*2<%_)6M**gx&El8P zhDzB4a9byILFnPbcS=-@5SHd;S7s8?MHEea*H~Izdrr{E?th{Wjl@|G>1f3o@~6X$ zbapW)XN`*_)|V@5`C_t$l&jcXEK|M0Ue&#$sB{tun?btN(!!UjC^>|H&*Ujv%%iw( zq6?2Da#D+Tli*i8806pV&4t9_oOFGF&3dKp|%_8=&4Hc9!E9z$VuO9e8wEoE7Iu`P4_}H}D zA0;--wfWA4CyA$YDc{9J*Y0hn5W|^ldjGL63f|PK9!W-k zON(U{$35UcGLySZc)6Ci>X!NdQ*d&hL*Pn`P$h8s5jRWXD=rk~P`HKhQ8j;hRCM#; zS4WD~foeNFckK$AFwfA6XF@pK!jPpKs^xJ_^W{xka?t()k;Lz51odo=G4(LZLGw9L zympm#+QLoNDEM!kY+5fQEw7qVh4A^hi34F z*gIM77;*nGGSV`V)%Ljl0pB9kDw=KJf7}e_d%}kRlm^;7tm4>>y>>!gyFY-PnS+^8 zcKX9b4`xq-l{ma>j?H>4%g~H*n?`ovtC#Ppw@wyein8{?RvB$zu5%!`%g#+YeTG_X z8E3UEf?h;Gh0ZoVc2MhN+$p|%n}+TpI_~a}33L*F)2<`{4vuE@K60=q^=r9_`9pfl z(YBy8h+ga|nu`vJCKl%Ih05L#7xvX9<*wJB--CaneRGhSz&A?*k!(P&9@lF1`bUX# z8HGF~@5<((Tek$;V{$?Ltx}>^SFnSJc72JHdg)-L)fxuhgK)#AlG9f$b0&2>8;`d} z^u_ZlX)q@&O$Co-8at^|x#5rx%7GSj^oCh^a#%-2$~u8nuoBGKcw$Iy*>yudD6Dul zx9NVRUp+=Qjti*5%GPyO>6*lgs{yAe>Z)uv(wEvb5k;oDagGc<8ck-Fxh_ynEFN-D z8q%x>JWN%U_|4~LJ@XdPMlw&oOS4*&6b~e4+1W6mhS$I^3)A1qg~B~#wZVa5prI9r zE-TZ>d!b{WyWo`I)a5_{5Yb4`0#>=>Ap%Im*D7?IV%F|#a z-$>sYt$&9``oZ84F5gX+aFd-Gj;v*J{wd>um#?SG$o7Z*h)=MFL+LN1X6PXIk^>q@5k6yncE7 zojQ57YY>hPsDQ%;&c+~3H>FF(R=crlRgX+j0^E^xu(`l7J4&ix&^fXmLtFHr0PGW@ zOMN<0%WUJVZhPdh_)SQs9ya!B_wAT8E97dnyQ$Hlb$)Fdn44xMTFO;fU+JbAv?ROi z#vI7&T>68(VNb1$(dy4H>bZ|18ksn1w|}1Cpzy7=NN^(yw|=#51l)))9QQZ4SyPqv zB_M(+RnI2m)O8n%#Gl-gFmAYc9Q`rlL^;w6BAcaDj6KbuF61Scf-3d&}3y%Cj zm&>EdgTFAQ!(;?rh;^b65mLt%$)%Y>YP1EYZ=MZq3!pqLH@^0YKZ&+~|L(LO9QLv0 z2dB76^AU@?4anP6Mtj>VTihJTqWr;mM_O}S>bu}B6W<~W#LfLZm+`xJSw)Yt-^qGk zX0fAu=rn(o8u7J;gZ;*dXDgNU+b)|lb?5dgsf)V+`@JrekjVQ=^GMsqH)!siz^dTu zM;E(f#Of+@Mb&J|xP>a8MSNpPb`Pn!U>T#yvN0(WQ%b!?Izl9Yr>*3?PkS1_iF|H> z;W4DFNNGB)-bpU3VaO_s?QJtn9ZTiNs=i(K_699hlAGU-)-(jKJ_c1q)?R>$;5W0$ z@s_O+Dqn+VdTuy9!cb4!@}tSn&fZXdzBdfC-VPHxzx+90l_+}5ZQyI^7f;;J;|&8b zqu%I#+_GmY!!G}{SH_|4G(DnvBEyw|TLzI6>EG~;Sz2uxE26IEgXvjsBHfzL#)){_ zsU>*ErxwKCPJ6^J(^5E2s8cwXxDTP7a(h!C{K^!RI9754@7bCD;UEosW)64U+?&T{ z<{SSum?mV}z$Rn{ZozT*%S+6ZXT_S??AM=#J>_7qZl!=VL}75uPNU>byKCz%%OKOA zx)|+a@T2;}8?yZBNj{i+VI^s1Uqml$ z7IRr9)3TgcOD}H?bLT{uXoPRM{k%6pw4O#`+o2CP27jYtlTNU7qgKesr- z&0ZM)LJcaNEtcf9+*~p{cfGY?=5OyuLq0q~F7EYSwGJRV+(g3ql(0#0u)7Wkv^z+O zOORqWFCvrOnSyjZ_-J@Z!e-;=q?Zkq&3B3IW$(Qw&eUG)k2n+c8UK+!=e-+TXRAcM`nE3Yd=); zxVzBV8`bLaBxs>*t<{yKoOI$ZMEj^h@%q_rbUU`VB};8fa1E+xDdKm}-*tO&q!N$o zN-N>AH!ul|gEu)^=2&R7^2ZVEehIJ7%=58y&kIj=bW5gjGmWaw5IhUch4kU034_Ac z4_L;>PW}r>S5qeI2bJ_|F-PDz;`XW>seYk(!hn0KL z#1%pg*K11PCe!U36G3;LIS5&jiHY3B(AVKyJ5RW)P&(X-37S$-w|YJ>$OCPO3tp0_ zdG^V27l+S|!rTLxiUd1}BcHs0GoHZ03$}h@w|(E=hNL}P$?l?i_F!NErNn@BH$O&) zM2*S^B#FQfBh{&U1q-2Yr-FVSt8}Bt!Zp~kD|eVd3^ZyUwZWls#+Gb?tk(lqN#JPe zKL4#DKHf?=|FY;454ef|SL!D?qmVX3!!)kAG-vK(#am)MT~pxrFNr5DHx*~%x@NF2 z^$S=3XgI8|belNz5fD_G!qNR*O)a=6Iy@FBkxiU%fp_9NuF)=bk?p*&?0XTlj=#@k zfb2+J-Knjk2g9N{+!Aew|B-s+JaZ)(;sr*ApLLw8?-eiB|&(RMqUw)1|No63wweomhl9)36*+)_mgCG5(<^tH2S#6J05UbH7_JX8{Ci~_si!K^lGDTV`yU)?;CP zj`}(p=x%v+sV|3!Spr7}N0tkXsO+1ZDVb{uZ_ocW%qHS)2y|YZ1wS7-cs%GNk?{Yy z1B-N&6YUv%M3Uz{b4%gg=DE2eCBC){V#@B&gE%XzKMr#;Usb9UUIfWY?6!(88n>nl z87eC@DbJ3Sh1$iBIlGB<=Y(I7T--Zxv+V4u=5E)y*)SDilu>TVx^a1OSQ~Votok&p zQ&yYLChNJ3s9r;kMW0fO8>NS3rVQcMtzb5agQmvP#zh)XQsgz?P9Mxp_P}{5rUI5R zced$4P1VxP6yM^S0`PV8{Am2mxzsYQ#Jb^RNVEaTNSa@I;sJ;1wg zBKqkS=Vhp*^hfUlIoCjebreX(sc)J`hi2`e!>8P5{&OiD$Lxq;&9fV(n>ome4lmvf zFSZZgomzS?-LjBoMbc<<@u+nOi1E?Sf+pw@ZqT5OhR=hDiSrbW0nFFW#i z?v;VNbe+;%dKl41D32LEj;trPi~mAoAh97sia<7nYVSoLK(Q^>1W+G%9C4C4f@1Sj<3-8Zx8%VQ@uqeT6V;oNYM+FJZuVM9lxYu!4BAOOC7NUs zSC$-^r$6Uj4fQbVRA=LAd1xhvwoyy#b=l4vd{J>cHYF)8Hy)ROUfRolkRaiXm@AsK zV&b>GdVXrw6x2+#qqfRTv|g)u!3-JnX+wJ|*VSv$_6GNm*1S%)(b(C209n0-{YrFp z_oY?6siv=*a7PNxv?Dc#*K40po~bRkvg^f$PlFIf-j;NnUA9H4tLd@mw_SwvVSF@k zleYL0h;GcD78`{7BVXO~`7&kSS{r~CPyZ<3gCYsW0GKA0=}o^Y6&) zv);3;>qp&M5-!|NVGR#i`qB)`aI?=-szaHMdc7837RhLbee-qM1J} z0D=}C!2Du24jSh6Ssm|kDqe@3g|K+eQAgwzy*g$pk4K=tIBwEci(YM6*~na+qbHj2 z$!cX9x3|bCpFvYB+FQCj$`@fSU8lHbm&cg=m_mL)g3xS}ZP5Sf)SuBBsY%1g-Sx{gr%N-@dq(_U2=#y)D<~duPoUMjsT4 z0E0@4MhCtaxGxGg5uNbJNmbUyX-yPX*^Ou_jt=VDz+uI^d`-qfi6KC;0MViGqK5~L zg`;M6kJ~msnvP;)ceYB_ljL$Rnb#^?W|>S_PN==iANs2^;_6Bm_##8;J#^$RFt-Mh zsf;I)5*Z^pFtD%9p8!3)REcx}! z_mI{(ulTE|AKFYzRX_ym>7#fobQWc9DX^*QDE&%~RoSn#mMpzb5&^mBF(@$7p8lr; ze?)vIjtvN~;cY7GWY}RT4oTC%Zty&RJlH4P- zXen@4qme9y;dM^D9?>623EAqLVz#jLkv_ZuEpC z6Dk360Cyn;+WsO8|Z<7K{lFW)x8Ux^U^{=Rjb1^22sU+q+;u{dqe81cY;aL*Ms5m=K|F$1o0#LY-a$2tN$L z)O$cd!hpc_wFn#Vv;YDKGyJfG_Vgqx_y@oN1B9{aL3$a&0QHTC00U@mWjyrcC{w`K zq(`7ZzcdPOW*F9K%ZM|T;%;sfK-YgBnE6@%b;E*fy87;J$9IGYd=LZtK+rJ;*N@E* zXLj%gO(D|D*p>fLRFG&y@7PWug@BNVh=`P!i~tvq0^iwN!G59a&#(SJih;g^Yfyo} zyzzMc(5(>W3{#+y-^7qlfo}qUEECvRIB$88ev%{v2zxM2Lcp=|Y8Zh>w`b}Y7Y|ya zaQL8)z}0{1w}1hO`2BwQ)(y{(qec3^f7yOn^$e(yX>nzce|AxSwaN+upMZft|7lwU z6(A7-o|23e*M#r*hcJZn{TANf^=N~kk>cNTXj^4|C)Q5k0o{LT!13??sTaj*tO@{b zcS+h16A&B*eFc8aDt{f{e;L2bl7C~4esd7ku;G47PQFWi{gx2iFt&c<08^WH%&&mX z2pg>Y-|Up2&u&YWgSdvew|}*&LPGV?1u^%be%-JQboJBmm(~$NT^&ECQ+M0fXKDYR zuvxem{pz#{2*Ob8QIG4&l5=~A4_8-R@<&myA?tCLdKpnx{4|f6jEWFaK%OF;AJX-& zx&#meh=JQY=EZB&uzx)QP{e2_z}iC~AUa9p(W%IY34p=X;S=%~Z4|&D-Woa}U|47V zuc)Bk-0tERwfNpA9d{1-J`Q29_At_@AwsXmbwVnyDk|_6{8DREZ6`hz`DYnXAL}$}~ zQC732922Mbr$N5H(z^^eG-FeK#e(KshgrPG8t<1|`)x~yBTr9B9rlR=?q{pjThDp_ z)RSmT9ac?>)J1%*K`7|qG~PyV56gm#@uxi)Q9srGAW-JM(`SQ=uk&swFv`J(|)7 zIl~@vbfb$+8rclTvbV{oc&}|+A^oM5w#%b?W$oj5MC~`PaJWa2J$E_tPK|@hY|K%n zwl;FdtrYoO6_hDAHz^umq@QV-!gh*lXIeGAv)f>IT}}7v(pNTMV&t9a!mJNpWMkZF zoBDAu&tOK-wR}|U?m>%Ba!-$impd}eQ-||u?X%B%HMk0qvcB%lsB>Iqar!fQ27WfE zs&ZVeS#jDZ1~H*3e)8IQ$`^%7qKG4s>`STlyY5p~d1B1u)Vpcp#z$^g@Z?0H;PQOA ziW#{L0~h(JNSW1K{L;e-vLcuDQt}ORJR)dB^Vv2JJeJ9^cx3FDcz$acq`=0No1g-Gjgw#UrRp-o*$)xn(=}&3`r~NP;s0F#%~NKIS(@g8g0#LI_Wt;NbCGdbftXlfRb_)-nEvL>cr?ZC&n(s_tI1 z*v&IrPjXeGz-llQ0hbm8-a7bYjBZ#!>d#T8H*|14HS{;vlB{S(3MEgVB{xm6+C)kg zAZ@a^xi-2svogBkXs(>*lY#7xn3Yi{6OEbFj~V4>P<7)*=6#a#2Fgt-kLaqijLjuvLv#)iL2{-=i;V#`rch@F0sV};9#p6Do=ra*kvnpChVwIwVwsPv< z)3`^In_HSgVxITjWWA+}3{vMri*8a1CdifK53_oD9*TE`>>CblQOV$@!o<@ zv*QK4KoWWAN->8N2yMs9TE=&pck#q{ocF@OnUHV=V`4|~H>o@3BqA9t=`e)6LxC`+ zKFqK5_-~7T?8`ugJ)xTxFy%CI^T&42&k(Ul(K*7-N#Uqjk&3n%*weD6Y|f%EJ7h&Q zObLwRdmxa_<5TG{&0u#eqavMsd^b;C3X#Cw@0G#5turs*h-n+fd9Dz%(Qh*L*0mr=Jl3~2XC57WlLOlE;@5jLL z*)>*Nntz4tL-wbmd#i*uDRwhby{yS5zTOizGwbP7BpRbXHc;BT922l;DHb$jCoj-l zVed+i79RiF@_o^X6n&mA+nz1xuAW%kV^tQ`6NGD8*b(~N`O-@(ebXVb(1oWM?ZTj-70~Yss4K#*fcC!(@iO#o$?NzPd}bMuM+>{2_WyjU zpy%~|(fr$}UWl{^PtF|~EKkMc=deIvS)(kaB3O299^JGsT|{J&J>c~*U*y15=inrI z^pMpTO*S;tU)CL5oCN>;YNWR}LF-H9-0QylVT8?I@ie+VSQD!L4o~lxN9QL0N8aGB zCsXh5Uo|U|_=-wykxaiCCoStM+tWfu$s2HVB3SIrv`~scVGhPPY|hZ(VXRmf6Efr0 zn_;hUk;4ZLnzY75n}SkWS>xwC6k8XM7#wH53Iin~XUM)(i!nn+^l@6M8z~JKcmkb6 z9MqPzg370ysIPhxfAN>VQKE1iZ?t;mXY3JDAT(}j%jzqqPPxrJ|$_AqvY0HA(%dIKoEbRq` ziSL>QTl2*#&HLwWiM|ZA8J_<(jz)&I5p(WN7#*j>cv6<3+TEg)KgL^1(dM<^snaMk zrdR%WD_(EOm~q;EhgVyn!sOMsi<%MC*vV}6-m4c1iJ~urAiji`y=`=MG#86>Q%aJg zTyo-r=OrYoUN(VT_*eb=XkXu$aLlw3^=_4IyUx+hwvlEAprjuk^j<>nL=`+~Y|QJV z*Jw>5%l*Jf9>Np|bx`a1K6^@Te;D||JD36fs(OB39~9x$1?d=rwG=7p7yfckB6d|$ zX=xMWAScBC`J2!M3Bkom=!fJe9c{Oln zd$v4rhXeJ(R?cJcc3~HDPwxnM=4HHBku<-W{KI3(P2o@8JQ$HsH~l9pIP$zrYJ0r5 zt3_x7kXvGMhPkKOF6B!ViO85@mA)Z0sUPy@=Pps+VM$tUe*)EEo*pT3Q;G3=eN?vf z(r{oNPdi(i{YQ(s51=9LWB>8moE(obGgBDZ*`!KT6IBN$?25w$wyH9YA=NHv>C5a& zEWgEueRQ%qGG374$6{L!$y1yO10GbN;>I)8>F2WU;G3S&Zs&t9{Yw!eQhTgwJ)KtK zjnvBBMLBGe3G+#ELrU>UET_vW{b7&_^YDkWU+<=;xdKYrrfs$1m|-tQ307tQvwE0Bjd)5L;U@1t7hm z?sRkl`A*Tn4Ed|H$Ii9sZv14b-_>|1wgPSsS3yXhwNh_JINN3%nMBvOHd6SQ!5G|5;-1XQtx%|7e4Wu{xv zqb-fse7-r}+jMDsHDn8wG<$+oVHT@@}$Tp6`n%{73q%i8&}v{J#96 zMp1fO^>J{Kap8Clk)Om|{L?ek5_kZy3~DNwnI9Gh&t#_jspU8;Ng3HGUw9$zZKaTVKnMBwW=9Mcu^QFuU4SEBgD$I zvg@szSAXlZgix7I8?3D%x4)I|nGIJC-kvqe8=HQq$SrA1ZNE!d!=!8DO)+|fBfor~ z@7dStE0l{4k1H&TzX}(yC7MW#a^mKA~+>c$Nq+8KBlX&ikC=;#GGOUPcW% z^1^HOnTqc{u$XyweQrupEUFd_K+)U0TlGaT%1hLAVT=|sjC%^J5VRd=~TU-^xS z(j-f#yG&geYClSwhrXR!wl^JN?I68kqN~Q1mGaT~|IQD>i%HO<9eSm?N}!GWRsy6D z8D9C7Q-XLQJk)jQYnyCwXvju!+1sSJKFQ*cU5D;koZ(DJBqN}`x!SJiY0L|G+)$uL zbWrfC*BAPG^g-F=XjyDp;cTp9l{O1)zfBdo+EZj9@Lx}PF1I82!HKJiDrs+`4D+Dn zpJ-JE=|gp1Zl!`5SBvR+>LF!RFHWA3Fp9`GXI-EO({QSJ>vSdUVg+l_@4t^Qdboz3 ze(KF1$aGk@dkG7@l8RQXS8#FsjcLhXW)!fAn6S=&Zm{c7;qg0sui|d}=DxfJ2F1EYaRwAzrdTl_$Gnz|L)3RncY+}S#ndMuPkz(>eoq56k*aujjF7f_nmA2B^ z!S@<6Xs=M?huM@K%3fEc%u1gz2y+r}P8soh#h*m1sN!u}fL|DQ-xS9A3=qozR2jEafb!g!# zKJv-&+Pw}@sD6A`{~ee)xvJBWU^zS$<;{zH!qp*qH^a(2A#O~-8NOGdpAN?c3VqS( zYkv_`#p8Xc1v-T(nQT+g$o-gIHq?bZ$l0;%zjWm7Mp0`J7Al%h#?A&sHYV`E4c5H-6oSsy>7C zQttddTy`3Q%>c~quPAIvK%~#CYYV$+`}^grM4hCJ{uwCDvA1b3Q`tmDRzDRdm3#*9!;ndyyRZJc_;0V%yLk!CmM$G<+EaPNZ8x$vNvw}Gr zcO{y1uYqwdal8s z+=c(j{E$vVr~!6jThiHe6m*pw5*(!S-scOZFYW#Qo9Vis15c{Na?U&=mgJG?Av;Nn zxXs!E@roHd>Wp#M^tIof3w3l)d`Af>k~FuX%@87ogm5#lDI4zHzE;~S6vrZHpIart zL%)4Nd6?X{Lo~~K5OdSul#*U=qmEkTS{zGmQDfAMn;lv&bzVt?L)XQ+gl78sUI+=Y zcUiJXVNe}mO8t}qmN5%POj{_Y4(QDls5|H%K8P8+Rop73f=JqASeJq54)*SUGcKDF z7`v>5s5X7m@f^0_qaCJ9@6z0hrZ2FxR+Nu;HH#}OK4e#lEj&0kvZKGq` z?%1}SFV6Iys;NCy^H0@YXYcu12k&z~*LB;5apYHoS-+s47SoZ+u;)7;a_w_myD!z+ z>CL|%bdi`3=-EYr*o39WfAJv!4sDq%rjAyg%vF(ttt4DHOd$Qgpw8Ubr(89i&|J8h z57WI;oqdHGW4Fp(SkDhBV=iM8@$K$DOG$)OIN_p=SF(+Ik(490PI-5Pr~JK2L^{+r zUQt5q_p8&iZCeu(;j35?9bj-hN~$*Ha@!nIV+T^wZuF^$ z#Jq_p$Z92h^B6p+Vj>Z{F;4&SFxdc|632dt6Eb{8fL%IpbU>>l{$2~O+_O8+pgFCI z)|pG#9wANOI!%YD5v9b-*TY8&86j^GkNe79up(}xMb6W zm+cG$@M?)~vT?QtUPz81WA_ihj_ML2$05#$*>wlx$l;)0^IA2u4sy7oR0Ktrw7bD? z=5_9jydAjpk+Uej)n}rLKTHHkk-O6!z&UOu@XpR5Xe}jG<(1W(em>RRt#x@GdO$g& zXr=hgFDacnFf=>)RiqhTqAwx-l^^vFC0UBd`M35O5evr~^_X<|kjZPxOw22dyqCus zxQ=u!y6h$=(rdTOD%4TzjroEGNV6;2XE_gZ8Yth2ZG{zRDIQ}AeuCdmI6baNGT`3@ z`nSpJQbU6dr!X(H;JxP}1lk>l+ zO-^Puw*T|>e^Z-W%xwSjsL>r#5mkGYUQYTEfw&N6!TVNE8wyxhDj)<$2&@De zghVcZMi03(*aZp6Qn^I3URpw^>Qm{~{noz^V78MzozS$(U|#RMB7oX%hm8eG!$X2^ zXe9}zjYJ2Q1VM9&BL(t{NQoFp60Cp36hxwH=(_-jfi;5@<{!5C!`Roz2^TbKOoPP6 zA&VIaWcAh#I#49^CxlH?83zm`DnLm22U^ri22_ox*FmD74oML>A{;{{||w9W*vkkqZw0t{#Ptg~6h^ zy!p?c{QP{RVNmjrC%3dibfEWvc?Ka;ESQsPSZA>BBG{#1kA6Q?R1gPXIo-Vq!9UCk z(ASXnVZaRmym&Ao1%IFgpd>Olk-9klYN|k1+(Q2swfTlh1oU}n5nxDsw|o3O`K<;O z_nHeAD4a-;ha?Jww-4tM)HM|FZp9;P;ol5|6y)%U4&^98-0+5E0JVjG5CH$W%>`Cb zW&ssq`1Un|0R9~2U8E#T)&9X4Huw+PMASmxuZVfN3n2bW)nEUuy0^nb^|AyS;%`um z3vwRb|Ea}0fE*{^N5%E-0h3L#r!T-Hm)b}22WgLR8aoUkDp-g}iW&*&1U%$TL@&f2 zofG;l`>14+FCXs>;v>R@XsJ9=&wEj|9YE08&0AmTcF?2KfWD%`(QK+8FwXUeY%8hpW z?D9|R2ll|fyV3|ysx`3^P6-2bf`@-8UJ>5?v`zb$f9@`QRZsqi?EP%VXT^7Y*fY-k zQ&aDUdh~CDen0$vz6c(*GQfuUsb-i)zB#<#)t6%f;{}a^G6(b_BF8BQ ze+=Ql?^#q#5mtT<$oa!(@Ztfp3Ki}35ugx|XE7ioc#QKpOY2F}sAk{iri3YC;8y{#FUl^coPNEaBW+^)*fo z`B5Ak^hZ)E_=Ac^d(a1rOc(HU|BZ{33t&Y?GfN-)QRTolj0;E)u;*a7Mh@T)xxQnMVqR`B{`4 zZ6qPmzf@8?qCp$U(}#zE>tjI_Y<-e6!?6q-Pw7CeEtwe7l z37uGnn^>lDsTS$X4dJ(IygMEsyfPU$@=(zZ>W%Iw^7$jYH?xIiVHlrlWy1zF!V0)tQ zW)c2ww{Y0v&bUqNq&es2x5~GyM&vwW zjm##qp?e2wINbV@evay%lNd>4a8iD1Aij6ZLP<_-Pzi{~S{HYV^dA#eIz0G{*r}YJ z%i+2sn<_8mixz7`lL}LsnTFtINQ;i$oBs%qy2(^aj-lOIK=P88s~e!L52b|2!cz|T|Mf4*}DYH736y=e9<(Qoh zG^Afiw+T=2+-%49+~yRT@Wow?D}bm^1!3Nvev{{Fe57oN+gr15x|nNc&fS}{g^3HM zAqK|Sp{J%ne^-wruksZZi8L_bO!jQIk;w`bo8Gv<_PEr^$oKzP+HM+T?Q6Sk*!;&E zj*Gg)hAp2pKt;^^F_g`UjvXpu0X#+$UK(bT5o?T&0ymO7Ir(<}z@zn2Pj7T(knOj9 zX$$UGYd#|cs9yh6-pr|=Om(){DwUttN2~(2yLnE*m2TJDbAFngB(yHeUZH-yE)H$$ z_<0t$8YEB1pHp=DLAKto}K4Dh_{#&Vz|O~K-h(Ak$x2&z{;1bMcUyD19B zGn$jvp-fNF6TfI|?*Kay_)5k1uKM)|a9CK8x&k0K7aPn`%< zT+T1?nExX})_r1>%_KZY25Fqd2K&jd=2^9tqb*mX*`as?i-fXrV&;FTsWcbJ#&MQGO>vJKx1t&3dS0`nVb zNpBbH-2R1f9F!%SL7PJB&*#lNi6k+EM5YrHM-KYxAD#|e(J#fteY_l#%g>0Tc-99TD6aNJ}( zbNtXoKYw9z%3QA~3R{~d2m(tDALNv;ip+B$v@)+D07+3~c5PZvEVo{aW8K)Y+=)8W z4s1)cT$|KZ%0wyqlaZFE4hc=lvo6b>y%#(=lbP8oRvU2%R*Vn_m9>2yAemX)n?=Qw_AXMVo0( zI1C#bX<7g639|IhXUHxep3xUVllmj_Gna|Cy|EMU;0bO_L%1s?+)%4w`&rLUZxprA z$kVB$a_(7y)_dh~9gaUbc?0#}Gsz6{#c!3R@Ph9dNBIk1E$FXe6SlRa1K(7dq`;Qm z6iBdDE@G=mWV<_jNd2}U80K}&ug&(Y#!_I&cTQysUiYs}Ru(T2Ser3FTq zGY=Y9x~hf$v}ks7{iu9v(d{L{R%Q{%S=+h()O=a>8eZuf7o!ua!5oL6VxFq}wlNGT zu$o>RyTpKon&r45I7oN2B5$DK+g!l8m_^;}tPaTQ z;EM%3x83)9)5y2>%#PjkI45bZ;<&HA&(^gojL%;1TXOih9xI*?wOM^$d8r2ME1i5~ zE2*Co$XZ5OfFBkX)E*Y%#bf)ePqH*IXu}IX>IUzF&j%Mcck3#|!y$RA7)4hWA9-D$ zVwCN8n_;YXQ45Qmovd0BY6tau$d01fLgupiF!Zp-A7*{Jc9`gUeZp~R=H=pww9MPn zGtiqF@qoC*j<8PVxS#x4A7KSlO>DGOF-mFM!T7H1#AD&lsEzvfHsJQ>;fr*?t)vF` znOByt^85x#=DU0H6PonWikfj?E&Y~4evHYdxr(H0SbqaN675|Uz{=s$j-_8}6=dO< zOl1{kVw4Mu{k6qXH}7M`l-tW*9Ajj%Uum$w7lsk$=!4uBhv?Tg}o<6c@^m`+8U2W@aF{ zi^(x-%)Nv&zxAR7yw9#!S}HtY`P)A7RqGr=4PU(J?Vcn|-gv($eBg}m z&sA&wYmCS5MGaRTk-dbO%?X}3bI?iUgmx>#R*?GJP%$2u_EeV1cm(dU>m+PRpLkjMoB!cAa9>I2( zIjEREp4=a*k#8i$;(~x0e9@ftKQ}$7IF}sR8ES{O0Mydl87ZB8_Qryvb|nLsEJn2m z7_`l{2qXWg{Xe4T;q}22VF#jBp%*=a16nTRC$m0;>DE}hX(4u8X8hppil}0qi z$E(&7y2z>JJSyxY$bK10Y?!9Z^gNUkBkV=TYAFxd`cc|39|9IGe#Qyyff4US(U=~^N+Q)3+D=qpVrBRPw^Nj7_7p)Dw|aa3MlTbHI2#`?zI%kyY^7h1;K4&--71ez45y_ zlAE`dETklF0=NuaLn;C0F~L_T4<<+V&+jM}KI(8sl!h~#{R`EtHxRbrsIb1XB^A^) zRGW%}&(Mj8%ktB;I1eQxPhV;>_`nFu_JY1cACwH2x8vc;G;mWsrM(XcjN8{S9<57C z{@fc@9m%7ADY)&dVWKY9S6l2e8<8?Dc*PIEG5AS|v*(*4>E7Osa}tEtJs5Wvjf(u6 zTL6=t?og<{8#7cSKzWQz9kr&-)mP5hN6MPydBrFzEE#x9{scZMmwX483l&5U+`r8V zz6(mFsv2i-d}<_KufE!x3pkQ(<&;v0iAyxzDEJUjB|I?Q@5QL$l|p{iu#jb9!K=z6FLJWARrDl&PguUQJ8gU-j%&RwoAtsbI$8R!&-T6B2*^n>f4RI=Ici?$vD70mNS&%`V(*w)9%|voBCbKDN^7IZJlk z(lNLe?Dg6raD>4udwCnNsi^M&DEj7Ls1kZ?MSEgiIS6@`h53A!CbIZ(LU_JXr8rjE z-sNgr{00v6*eLn{1Xwh{DY}c^57LT}^004t)@sc}72C)Y7 z8lVY3n89;5@eG$7ob_dQ^Api;3{;6Fcnlr5?2B#Qt_bq&RG|f(G8^)GdZ#A#95*M$ zZh`0ZimJ5Zti)WQ$=|eFZwQRCXfv+qJ2%B%F~dKZ-AZ*tEYVb=X47Qm9!E@fN+77tPvuT!6v8hxhyBXYzSkCnjp>011UVQNgA32o>y^vo(_)DAfMI9-dQwH>N>8Vp)92F zaf69ID5X-$OF0O@0VCe+BrWX?_tM|wR~?67BSP{t7!iq5IME z^F>CjFG;Vd50?EnbIti4Dww|dXHXx$<14v;6XA~|8NmI%Ai(dWiIhtSg*IDXdFZCL zCPaukz6np_$`qa}J`av~CoQcKLVk*?8=o#b!4DBCCraCRzuYtWE7lpE>&eGPTvLvY z+wnK0a_g@H@&~yInXuqR%tJJE&YV$*t0Yu<&dpyKIHkJAsh^#!IIk9cw&HsZx*x@k z#(8@xfWNnTi?>9?(%|W>-+#%Jz{2{#l5d!v_`#R79%?{PG7F?&^&RQ8TYKfjf^Qdu zjCl^El`8@_ch$1)R8=Ua9S%qY=0e>Mdw2E>C#Ii|S!}tL72!L_?J{%b^!qY2wLkGK zV{X)6nvVBM3X;`mdngw32;({J9jB9V{jADV>tttEY{1z7JYBa&suFyW9PoOaBpp_-5ajM zne*tE*5X;?%|4Y1H+kfDm?}y7UAUY3ju%8AJ~5YETebv3XOD$K(;RxZZbG2OiXG98 z2IJ4M3wPME2FSIPYXy7K+ar{{ZzJCovoN2LS-#}6D37h)E2eF;M~i_>4t?kwuosk^ z+A^(ixF-1KDt5fv#_BS|V)=4Bgg0ge4MHr{BF=ftz7LLf zSCZEL`vixSPNwHk?w^vcT|-mMN`z{YB+fnqddg?hr&WLMuXsX`D=X%=cada9<93=Z zC4KqGJbuN(Fa9>vuo@=F#NQr|wW&Ma_9(?wV50I$f0Ud_JmMs&6MU|%A%eFZ)VEH} zFYzyfQi_MGz$NVJtVOa7_>k``{cEY{ zl9;n?fx99KtXGmWzm)MzNGj&0r`ijTdL@~)enU98-^u`r<8%co#?&*NL>*zH7rRxp z6q*DbFy-XhoW5ht`||m}dm8&uk1a6FtMTcaq!`y2Bderp-dyiQGFDjWRR2n+b7Oic zM>h}2>1cUuS$hasxnERN!(+8rjJCNiJr&e8y5vYfyhW~g?bm7)Ufjx5gmZ-$Bs%N^ z3R%!K+|M2ek|0AAdLbpn06KlF8G_r&kv4yPmqAxDLH%R?_>D)3s8wzio&5RO)>}p5 zWYUkQZSbeIS8zUImp{(+qBLl98mJrq=c_xv68?fLmZmUMfWl&vHmAdW-Q;TtiUof3 zwdd#4Y0eNOm3gNl)E9nGGHK$*2V?gc4NK#Rm4sygym-^s5YsJ@ z$G6?Q`R5EMAW`(g-swV+y`2n7T^_T5W_}9(m3^sshXZ(TxV2E3IJ~~XPesu4Dnjc% z?!huV`YhioGD0sNxnxx1;MDGwq<8JfCQ`Z#?IiYeQRIX*9F=mOFVH-bu}*d=$>vbc zYW`VFsf&*qnEk=t8BG0>U`L30TV4^JCXx?|IoFM}B!+RzkGI8o6Yp|1DT^4J>1BDk zlFOBV@+*CsaN?@?$ok+rxnCRsR)QX&(gr**dxk-JtL$^!dzc)yZ!hoKkBJBOal%=^ zU|*VPUQ!P1T(Nj0kmRc~*W1`T;Q3@RPx^ZO)GVo-?M%j<<07mgAxL`~$q-ojWJlh6 zI?gsRGUI*mUL(mzqEh|V0hVU+HMx|i$xMXl97;QzbZDk+Rdy;!4=VQ(cCBqwIvq2& zvm@RvKfzFx7J2xX%|#D#Uevh!7T!Ocnr?il-Tj@Snaxawxcem7kj%;rbkq%auqK&& zn=bpyN>)Y|`Hf}feO`b(X?^>(PUhS9T38-}m-o89(*@wZnzHu$1SL&Yo1+#Sh(bDN z%wOfyA&X^G=CpKE%v(~bsi%kHfK;wcW3kU3*WccNhRDSAJY&EhunvQ2}9PQW_jy`=elee}6*>tG-< zpp9dC_*W5(G`|6pu&8@=4InIs(Iz3YlQ3j^jk%l|GM1Un6oCak$v$;r)C#9qfV>Nm zqtGAAEQt3;%PcPiR_RntuMT6L+1F5NT7G59ac7mVL;-yd78Xp5yTS!YcamKDa_3q) zeO<#s5-we)N8%JXEA`naeWP;KpeD3C%FYPsBe(JVy zi7_a6T%S!r0nA~t3$&R5u zIiiwrZe^Yiqew8DKo`LWkaOxob*?S9I*%dne0Jc=XK#8S5*WCE#HWiFnjLob`dM;0 z=3^nQUy_jK{n9;%yM0wq4)t+KhV)+L@ovf#W}}v*08FJQjqRfj1Q*N|#IQbQ6f7Y& zRU~6FsYPeU%Y%5+cyd?&f=fNIAtlrdo+54i6%rYOuDjGh#gXgmXN@0olr%gO*v%tY zuP`fh)5@+ujp)v(*o4jo>1Uj)7T1|Vi?7OD7_8lV^uF29!+V@bOnf!qL6_Ka*y~xT z*Uwn^v9}3LhbOW=n1X5`ds)4qszp_k5Sh(FLaWdOVdY_my(qyzpul%Sbm?H_o*}Fj z9)C6iJq<}5OeLt&Tilw;_i@*)>M zy|uPh<*o0H19uY*6cdQFcJ*-?UC>&!E_kwF-88ypKElaPbDa1Tz37 z6ps}l^{mkm5#tUWVikTwoUD8^UlPj(M=qg`uA@K>qTWAjc2#{66@tHS8YqoQWobbIrP~kZ&2+rr$xwvV|ht z>uot|uEj>!=v=VvQem8%?8$e$@$_;yq+dQ{wx}$X9J`=XED`WBhpHj(-F6l&s8u`B zx9}Y8^~jTc_DiQqY_b}@f_<~x8T-?S#lUfLi0c;jBAvmd$Q>2Nr-u*Ru@!4Sf85sw zcFTdH0~@u82*EzY5JuzHr&zUCM$H3|-wNCA+)!X8RZ`ut_o&GJ%WUpqm5}H7ZA|8w z#b<^bUIvX18%Jufi3Rrc^MikhBiL77$XBwwN!?eyahh*34Yos2|*%4 zLLn;z=$8QEh9eUm-T*Sxrhk~fqfO_Ip6XFepcUmQ(KbU=lEE?&E_7jOhRL| z<`NVJ2#g?=#QK$dg#3O<1thf=aw{ScQBh4ZQc;PHkD7sr4G{TnLa)mb-AGb_FuV~$ z{cEp=3T>qhR7x3%dl7@EG{|*5?-5e?jQm_ycf2WeO7^^cG@E`57#b3;Ai~7FGm8{spb1 zgiHkVfCY39!3+Jl(LX*0|FHSC8FNG2KL@`L;ULro3?0BD^p`NiPcnfLEWim60QUM- zewa@yOoU{J2wn{2h9p6ibGN%bZx%6>&+heoqi7#cN|fa%6tGvn+Lu@J7p_U7-$>vm z?1!Kspe!h|t`mFCfc|HyvLfQ{pZ^(J3h0$g6dYKHND+;Qf&v8U)trDI>8YOQn^Yb2 zCICqClN!@k-aq~74HJ^<2L%dqFTcYD$>Ky9DCdXbo%9#-FQ#|+SO2n)+k_v&DSy*9 zgUEkmbfs6nVc%DdKhRG+;So&e+h?c{>ndoddLRc#E%>Xyh#awhNi}>!xL5mkn+7Pj zaP=?Xn+P*D!aLx;yc1a}J*!{bREa1PK4bZu;jDBQngh`5k61sTD!;$!{pQOR|AVsSe2oAoor-6X| zxIjYx-4|~-ATFXUXn%NhO)R2-IAM=3Y|IV7Cfz*{5s(Pich(f+`nN3x7*xCPKEe2I znEw*+i-WsF^aH2SU$O6=Z(mR$q8%ir{RKV{I`o@QlJ3h!{lJ}Qdv82<+a5}a2_GhH zu#w)or8y~BMhV-KhN4>E>+J^Fo{`D%b5DP-8-;Y#op}A@&>FJ}%pxXL2u}3)w;rghRYJjxN4-y9Qyl$WeY8`=k&P9<5h1`-j^(6@X)nof(sTMY?ZK&>#`1inAtt~-AX z%kHEa%=~jLY{|gsOK(L^f*Mkcw5yJ~!)qns+{6-{ODCVmFgBD|C12ERbQ+d#n?^)( zCx!+IX5x6HiQ8O3cbh%fNJLLeVcyjhuxwhLVtb*Hc5P)M9S>^fOw>%Oo5r{ZXWn%w z;b^bM3e7NsHz}; zJK;Jr>Gh_`Ln{7lP&%_Tykz37_m0^|G!*Pm6FK^%?|^QLqN@7k3_Nc=l&YD)g=?ay8Bn~sUQA(1%-Fy+l4L<5t8F6M zYgp0}oLDMi$beml#3v&zy#G*{bpPfQdzM|!QfSL^elQReNUJiIG5H=IX#$_!_WaSi z-6-GaEQoVUCUzdqrN=;i@S5ltw%MdLGB@*%35rd6hc!- z`e2m~iWpDI4x-WsmJUK-bLZ^F-S)>0S96XpDTubdB>x(WW7Cf9%G=dT&qYHK%N_#t zm~lwRoms6LQ&$Kff>N_o0?WO|J@0Tq<%wdUCzoJYvIy)xhOE4EX6I{v(zBEfo#$a{ z*5w*Wj%HRK|H!?~9Vq6Ne8B-&zBUuWUVD)pi`N z?YCj=CtG7|_Zpw$ja)-!-eki{?BB9j#gFTa7wHhMPD0{@QSY!cCzJf*wyA$U7t~)q zo_?lP&hhg^66DtS}d~Iwtmo z$NO1oousVL(>QI1`qRCyz0QDY;5S6vrJ71rx7%z+ts#Pk96+_=mi;8PnLV!H%;V$k z=ewF95LtJvHt>-AEjKz~w6buFHuG0$MK+D<)3Ti;I}2lWjr%eSg!)bT>P$UkI`9;6dG<` z?i4+0SLwMug&6{^f`kswP8O9w)JOe=E*DLmO7^UuJ}({J=owOcEx_`WFBzmUFQjE= zPtTy3de~XTgv$?)qX8*V?o2xXFQ`KRag5$r1a4qpiATqx{|NR=Jv6xxOK1 za4q_Vwx;o$0{jgmnBk?Ab}b~E>qA2Z&}6nYn$E{exVDI3!4V1#E7k(^a_n^~;V!t1 zXj0@iWd`1wzp+Me0LhH5y|%?yZ|paVfeqNy->$sB6F+#@>QJK8wo3 z#gAakSv~TYj)bI`>}duHpgCX1C(RbG!nylsjB_UyW9H;-#_iR-$H0MNUP4`SQ7-=0 zUgIPm*GBID(N{E$TVAi*!ec~UnUBP;f=bIe7NyAgRN>rcnk&OwHN2H87EL1V$I-cs z(AvEY+EYXM66@+Z6I-RNTo8|r+1@FnpA(~i#v~zp0J|`IMkC~;<~dFbl@qFBy+&rT zmws3y+NwJ7t;?;?O2UKHsSrH!t;Bq^6B%u{_|&Wn++nyJTXCDn-?r}%??hF-VZ2G( za9(<{2P{0cv?29i3?dZ}g8lK8f{M_-D2>xqVSUlX z(RjaKfs5lxKc%P*#aJH)Ye1{BN6;JMWj>&g1Q>qT8AYtGhNmK0Jh$;ySPez{JWzkC zpr-TRZof^VW~eHUvn7-*z{z`j7(?@ld7l~nDtO6BdoIsjGk8k&yS3~NYB9;kwOd_XEi0dX(FE3o0ku*6m2WA_e{AQo4njl6Y-V<6p8L6^!H&A#j4Ur8HVA zglkn`y>Zhj^ILOB_*hMCIlp%w&V3NMaTxLI#d0Dj5v;tsRT4rT=ElTN z6`t_fkSsHY!SZ^(J$=umWuZakkaQZ92p*bJ)+t=oH~3cVLs`J)Z997S2xSd%MutSn z3?pCfvO~#@S*K$JPv0LB3)d>npo*`y2r9Jx&A0TvC|2Hl6y7D%gn@pJ6nt#=_BG&5$U{zV5s7qj_*L3-ugA5QPYV>iq87z|>S`4}AAT0~{* z8YsVmH9^R{d zp-^8HpqWz>hznN94^V;BRhovPjeUE`-FzXj&Ir_?Cu1P&l1DFc!o*DJg54>cCb!|9 z#&j->e>5elH&d)g5)k+ZtT(BLsc&hf;meSeKJKaxdmKFp1bx5t0T4U>KL z8*Om8{WR!H_K!Tr^i9vT<2~JG3LxwG_xNq;nZymJJC%h5)LyIF35yd*aE2Q0cnFHQPAX9y%H!muizf} z7LL9*B?xr8_$LV#RQMjeWH+zCWVt8vR~@cf?!AZQ94TgYwbbKfSTfx@#=C0VAHrOD z>>~_gMYuamGSc%;+>=AJxlREt|5&%1VRZXbSdV^gu;V|Ns``P5%Nf5Xn~sV~`2tuB zK5JoTbRXy~^QZXm5sejbcKj^G07U-lf6eJqt_8>uXnq?EzIDOR}*X!V!@^o0q<*(YCP9zz^tH<=Y zv|4q73Zio)`)VH1ww3sx(G@#m2d>*fQkum8yk&oz&r(k{lFjyfl$e`rl@3b0qBJ0T zN8TeK`QQ}yu1n-pT(!*mS*oGPF3IJKx*Gm0DUgR+H8=l6YK)^?dvS0J(xy(l$D!iW z+-|LgE{}vRUkv=hN1tV0E37@MimOq99%B>vHo1E0a`^Tv+vLyi+g?=tieG2ua=S!V z1+gp7m?>Alj!`BARLDmku6<^x5GkC85-OhcjeKZbRb}pt-O!Truj&Ng9(XlcLZf@L zN^QF&0IpymIiF{KHyM)3zCuf9`7z8Mivk(cDUYY7RU6tY?AP?%Q2F{6zb>2#oSNm* zZ#EjB^J{TCrwgd$1rYH%&2)WD8%Z=|m7C3eO_-;)%%xSFn@Z@(g?W6L*J#u*noyk! zgfJXUTyIXn26v3tgjAogNWPq6oiMGnw}38Tzn?b(q+v@^uJUWmw{aZZFUx8nm3em2 zs*)BHpT&bo6Jjc!NZI3};Y%g3@$GcET69m_1s`l~juSAQ*{2;_4UW?|c2`zzh-~cO zDE;`3CU%rLy$YLK>1%@Li%bJ;o>&$h?_|ov-CSi?3@*_5_V=giYw1}0lGY2}mtU3R zOI4gnSdz*+tw*~dNyLdMHD@yY;t*TP%jf2;lAK%yl096*7j=UfsS(URJ})V$H@T~F z<6%@@FOuZu^6RpzSvP=HvN?H{!@oAV2gBfNX3Cu{q&%SW8>`g2XB0K`d6)~6op}cy zGiPnemvl^3QqSS8aS4=T2Kfzm7?l@wmz=HOmMj}>hUT$a*5eV>2L(BbUi5MuiPne{ z@@6EXyATGNeFMJL)q!UPkIp)^{O7E24TS<^aH87qo+?N(d_*M1M+&iAqV7DXC~^oz zTX$U!I(m1#F-kg&FVf5TyJ+az60i&^eT|>x7E;uslC~c8mBF-D=$qgxb@rnG%239W zGgK&V&nxUDM=+VO(nY|ZZ90id;cKU(>N;~n$|hwq#{OHqQplEG*tk~&HL*$0iIveu zJ8%sugE!F46gT4V3$*Q=Xaii@43JX`^$N^{xq5UMaZDDWhWH`q=cSF&g^DGbrvz5L z%2{!UX$s|snI+o%?V2w*rFA>lW#&(wZt?gA{%SBbDVM%jE7S=^lO$Ht28>i)!O^ax zkMb)19J&c#x+jgw;= zCdKn`9u`)zHquvPj2mJ{$N%P>KBkHY@NO1^R(gnsI!cqQTHVCqj<$oEkl1UY7PB0# zeO;nvd;h)%UEHl!v!##1G`T^=T;8|xwySsKSuB_w;#dV5HlT>!H;8kprKo{;ZrI7# ziT$f5TNdp`z8~+MrsyqeXt*xIni~2y(XICf`3F+sY*q;KPnvP!QK@P_|H5H}#Ky0; zJx}=wF-ha#El<%Sicql^P>LCgF{+%&f$gN;Nql9Pw|2hbEVh0;$g`YKTgk;;bpzHt zk^9RTRK(-)?j@|G0F{@$Y+y&|@9ejSS$tj|1u-Ut1Zl>2y!i-8EjC`+gXtPQ1vi)* z5AlM+PEzXCaA_UcL3Xy4Tp+|mE?DXg?KHoN74&3yN9G?MzjrPxxpxLN)jKLjG@D3poSqyTS6yN;38<|nIs3E%TJn0|_v6_8Nb68BlO#%5W z`@a`tvn~7vL{Tp#V6a zn7WPifN^@~ek^l*2rn$AA7YE}ahZfuh4of>O-*!%S!{%h3DUS8%d9mgvkPkgB9u&L zqVw8~5}o7EHo&hq%0CpE2p%nO!ks<73 z0U$CP?165?dH5pySR-Rf1d){r!j8(yYXR>RA{w^EUtZ6In;}-ZPCSKbs zU>T-99wmAFy#(CdpMO~t#+Rjn!wa<@L;m;c<+%T4mddX~M>@@5Q#&+_Dpon{Bo?JL zK*P6}mR$e2OKGUBX70IV-2E7;Tyu{bI%}w_hy|=N9D)*6}$%<+)LPzU;Np z{%?`D!SOuumWxdMxmnt6$!ampTmU43QhlCsn`iQQYq{e(XG>h+kOH8h3A-REhq8_x~Bx(*wGKK1S47q9I%T4I*qs9p-?+tn_}S3uD- z?LK z_OCyT#aTOWIZ)G|nJc|&syy3#Cc^`~4GJ~nnNBsenb3syH>AVV`OW?v)DO7t)Fw74 z-dzdp-hY6*IXupl`JlG>BU9o|)N7M=d(9RD(zQeRBe8-$U%H>G(~PnEqP&y3*83r_ zO?cl8H#jbOZHqWwFx8w#=l=|T&(2Fse zkeu&iVMDsfA_iWoY(|o}suR{W8|G`|q^1Eic;tVYZxN?J(O<;1DkNAqC4O6wpo00K zSHscxv{^+g@YFNTk3CQBU|(`*O(P3`IU)-Z{ce8vnO>Yel+Ln;*Ko?QUA z$pkN?$NJtPUGFDU7z%i+Of`6uon>^@OsT|R6tr@_;qb)8DQOc9g)$WrGO8EgBi}D< zR91pJI{8G7$Wb&20WU>ZQ#3g|G89-OR2*Wp9x)GkV!cNXJgqyq+A8^VStDfB6#nQ>Mtu$@1Ts zB0D$Bf2@?{;NoN^`rikJQQXqT#ng$2QQXGJ#Z=Vvx4nrejDP@)vx}3dku8kJ#{aIA zy?tTWrrKtvA|i$pi4Jj*3~t_If@2zngA;M*L|GtLrYT4Xap9DNTAU^Ykqz;sYOatBnQJAfjq!W02;SG!;S_90}FWt2Lp@b z;(9Wof;`)0LJkK;I|mWzC;!G2B7g=j{>u!`1QWX`)DLV`hX9m-1VlyyjFOCm1Ox>G z#rKMd6qo`;6|iln4g~KPfCGZyN_>zY!Szoa$I(jl#PQ<=?(nM}xBwDy_~wTJa-2sv zkqHV5;V)3JO<~*_KCvNW009U{a1r0ne2~lnMyOK~5XkoS_S--l!zWZpEE~W#fEUgb z_HSsXP@R;zvy)iv{Wbo zJ9q`_gfrb&^-Mjjh`)~&K`l1Jrpa$om;Q%26wm>UPkW@l4 zQn`f3ft`pzL$!Xu0|*RIF8pioaLzzFMZkTOkf13hu0V!t1AR}rM3Nb(lcBrdCwI{# zcN(}))U<=ON62w;id>VSXRAIiOk`+50&WU>`PnVuq+9zt{+KIF?Wxa8yqnycbkfybUw2hkI_a-# zty)VPck1Wz8r%+KgH&qp^FVF!kubRvP6GjEu-Ff=fSwPp-9iR(RM@Xjp+#UBDg?NB zN5UI(CRO)^oSzddtSG_NV0wO}!9RgpeOm=3AdB!|e(!gf_m{wLIli_rdMDjMxF7s9 zG?7?&)N54%TMm+Nq$VW?6BQQu*i!p2ya`f&1TufHB!4`J$kihw_stvh-F`^p zpTW9ay&{OjE@6dp1w(&vfcQidk&1&9zJs@hbn?A>X<)8ydpsoq0JYfXgOxPl`@@Nq3e0jNd5Y>i*ebq)jXNeMge%T3G0$pNaIur(7 ze20xBtqpuqP?5j{lOpdgkoaQF3->A8-7RV@t|uxO$bbj7A4#EdgbtQd%JLKc8|AY{ zopm)teiAE3fP2;vNgY|e4CSh6A6D?@gYoHBV1$@p5o*b?EabjPl%a*po@6IuDgV|o zS@$sL;FtGaJuDjL;ex!AzQ-#f2w>G|rDfp`QN3!s85Xbf%zATXjOdruY5~PuR<&Qk zirJ+FLVmh=W>#LcFJjb!h0aB5T==DV6ADRmur{OMqHsxtr}PesWrwrs-EMT%ykar9 z-;ewgP30~=jwu`siy?QuI~2=da-=uzgqw>Zwp1jiqVwdt5Z+TX7E&yKrd?d|=j+KC zFMnBBcsX@)A&12mc;B(t^SRD~N-#YWUw>M}6h+WOEJLpj0lG5p7xxqQ*tORY0?{B3 zP6H7GjfjH6nM?lNmxN$b>Mn3y9Y{-ZwbQm$84vNjqaso(Amthgi*k1+p_+I*e)98} z-d9FvAZ~3OLK8@Ly>PaB(;u_i;LXE@e#L?3D~$bQ0a5v~n+$iu@-$Up*H_GQ|0-8` z^;3FVn^Gph&1zA2uGcip!~Cd$sUiVQ`~+FwQeBC`Zg3tI_#?7AE-y`J9kZD2bPTGk38fL;qk4D3Rhadsc|eRgI!m;H zKFVlS=4E~KEcPxgnCX0fJ}pyo@A3jrB-n1GAf|bke_8_S zp7B;{v;9(hf6bNA<1?2CT62m{Vohq_GdNR%u;hmTEB02;MHWEJMIgr)GirEcM(SiAr#+#V?Q# zeCgQ18z4}jH^M|ynR=_Qx83j}$1~4|LVdC|^-@+eTSdE-ClJouYZYnA^EgL5L89Sg z%$S_#v}&{~avY=pt@C5=sw86pUmFhze#X)5`<R zW-q-NMxp|Z6R>9#6rP4H@&pJI9!S9;c*#~bT%tAHOdMe1_2>S&PtCcKBp9_T8~Q0| z*OWwZU(2|s$!*-%)YGSfog=iHJv-&HcC%>F^KvsxBQFzNB%I86B18Fcn$x^z$OOm9 z-~BXncBS+yd#uvrBPUzk(JJxo2C6=84-r<4Ar8b5nkRF2G=I)O$$dPS<=*~ zjwL5{ZDG{Epwix^PHOMqW=$U}qyM%ew@AuKF=%1C^VF=>nlnZ}IX8PogFNr}a#s&& z9e+~Gh#A1@M}QWQnO3M(PENkgOVK?h4;OXMT$rci5mF5S|Mr+YuYAi)D97#|O(GsM zjxygG*6Awi*H+-~J`@l9m~@km`}qWDxOF%a-xbdzbghRJs$q2@gHuqImHjGX<=X|Y zn+DBLN6YEu)eu2FW~0mPGCKz8EQdbZPcIojcdAAUd7+cPy*|?pb_hl|u5)KT#*mwy z$a^y2Wtg!{1!$SDEtTpMviunr*|Wom9eF^;g16SeII^JDa$Jn^S2>b)4}u^32;3V0 zk(ObA`XVk>?aY~=3w70y@lA+aOYp@af<>C4&C_@1RTEZX>s}EmdQ%R+n+nTX;hSPz zc`x7$y&}RJxVjOPfn%{uyqKD8zCbhHS8r-mCZq@4*R9(GmfpDCqU+{zqr^=nTz{ga17Xs4K8;1l~0J1WXol^){@W>g2oN+;Ku+|nd3;Hqt-1Dpmj2QRqU%}M0$N!* zTm|?}q|+B1vjnvY%T)LmkY{BGW~{Jctq}$4cyh;hBvExaO$;`j>NdD+Qw*f^67mf2 zTbbrn_#ydU{M~@XHb%3ZDcF!#MIIbYALyg`Fn!`rXxlBAIJZ~&a@=)_haW0cVi6N+ zzYj-WNe-!>=Zd=C?7tk<-h zo!VHf@k#nyPnJyQ_IjV&IF%`ClN*V<=K}tG%aLZm+{uGtk2bBaA`89U#jw?{!P-5i+igay6R0)f$!8))oi+* zh$Uiai#t0u_2YQw3Url);gtcJ@o#1SIqWtN)-H~_O&(UG^6uM#)EQgWVdS*|X;u0pP0trxwTm0yc z^oKj#c2N+)(mqBgkpN_D${nwcFr%D6n!c=9YK5$&{EC?POe2HK8eU7u|7$axVSmtC z)e_qT6wV#k&-9bKQxz^$(&eSyHJ0ras^6gV5e7PhJw6AL{5O2%3653^L_J=PX)zCa zAfez)Kp3zb*8N){PCRzU3V>TvxU&8Vjlx)!el zQ9vPj4x>3!0spacs|D7pxHxyJ(`oNdf^vBtY<3Uq5y3sD@rzRa`WGT^Y=K7Z3_C_m zsgBF_i8Ax}{PLh2!L*6O3w+A&2{a(QInR|Oo-Jy7`DzE|>z2eVZ=1VX+)94V@u<$m zrrsaFs0*p-0(GH_g?&sBsqJ4YZ{st3j%1PNp3+Inh zzf(Lbx5JbXsS=fFj+a2FCTcP9wMx*n|MlCGylU6@(UhAIS~4&T7CVZpKoIi;mjaq^2OIx zi9bQj%aP;A+1KYJ0>x3K!?%~E6>e0SIEu{*^|i*9g3h@1zpZ_fc53`o%NaIy8$gXr$z1{OEfkE*_G$!e7Z$+ z#Zf5X&vn#A+Lrz9G8_DpO+J_P%Y`Yw({kQ|XSiX-##VR|{kZAKJ#EQ(g|hoG@dKgr zBuJ3_C+>))n}DOlTgbjOH{E$|!zFg()8W+o?6-3nT~BHOytQMbm$!4;>`zdDtcaE9 zsm}^^JaWSX#tEhXT0cKBYj!M7G!|>MAv_)W`+@DOaT zowPSAt?Jv11$ainFtq%?=w0dVA1n_lUuS&&7<+o`5q|QD4YgIdImJyWIaRs%pEu3O z0ZM^0=c?lx%@-JGX`>-}RAOPHcj389?$J_rBtq7COw56!@+u4TKN*oo6a5S&342jX z1!HqH&@t;mY@V(PU~dlxn;%F<=^m(MBvvgr>n}YS0|$IRWKq;-+5&i)`q&yVx3M?2 zCo927OxVVP9$RfIsK4Hu?$?c25oQFBWJ+NRkI`#NGa$6)vB68~-Tnm14(@yM{OA+# zeiQsSZi8FEszS9!3wB)7_}P87~UGzVe^_tHnifmKrDru_mEr4^wHcueuRI+@HzYC zH(fZD`i)tSvc%+sU!0-@LVhfdu#Oq9aTi!A**z_23K<~SE7_dG>ECGNY-~Ui^->8g zKq>)<*Rb(cpw4;z{Gb6G*)7yAwB@R^TU9>fKI9Sdi#2K(wN;onn1+b=3AlQ@T7^yR z%L4Hca(?+4*s@n=RtzD!HA==%$jU|rZ`U-0p0~PRWCRFLTm9%T^C6)0uP^BP#tv0c1WS)+xGNytAUYgaFCpa1 z>ytdv1KD7uKW`*cj_ky5A?YTbe$;OI%>at4_Zr`99)kngKmF2&nYk{nI)Xu=y_9cK zT85&6{MQmbAb7r@r6nJ(toh*%gW)SEWdyh*a*H=&CC;e;Pv+$5?YD-aAvgf+t)-@t z;u>|fA!2MY8y$H0!k>*Q7))fz>Q~##rmBrobHa}^PB@LuX0zV9<`KUGoKgcfG^nlz*;Vri+mJNh zezF4H_jbzMGW`3XD~g|5dS5)V}=bqE#Tj z{c&J`DiXX&jtPg~BL4hfGhOAw?2k7N52^^79ge47=)gpxx6ZN5z8ZinN2t$X9o z(SItE1wxm)qwqgo3ppY_iaNd7yG-G8=Wct)oZa)67`pb|hc)|kY6!`jVQMY}9Qx$(2eXNUc$ zI2Qp90g3-aM$U!tWpU;8N!>~}EO!u^D1Rr+mpoL@I<$7i`x>pD5&1U$A&vA-6^L(49mu8!=rbfjT|?A*QCwO15Tsz_n28vt>ic@*uSd#y_4b#;VBJUYdUoS>h z_Dq;)bL*YY{T;REQW}^>vqHjl_J59MfsdF{L_k``h!e%MS|Z@@9(U)w@1zPgvsx0M z(am@i4>mQqI zo0v4CT~mAwS~_l^B{x<3nGp_+^!1}~!P{mwiQ|%4--vOqm(-8RGnKCz~q{oxmmj=#r(4D z5_V{~B%i}9G!StM2dFmwga-$);@EhYhQD9-{DHZ3C5TrunJzux=RxWNbj;rpV zb29GT)V0G2CjS24usy-$AO_}jk!Zso2Q&-iEOLK;bUe0wVs6*^AyGNLZ3deU5*ygl zfV_R8Ry}jBY;i+}QvKDP#js_CI7rG)Mpx)^T?dqmGjtnALn^4BL%5q~(G5{BDi-9R zCB9TeODe(d-wE0VQt8T4few*i?=Ojo+};;K5UX06Hfwd&CqLy;O zI*1H@I8n{u8r>$RmkyIpCugs|WkIsQn77(E3{kINoYpK0l<_bH&en1Lie@W4xal#7 zzH##sEwJl2z8VxSW0mmo*I*d?NV~V1 z&t*%-)XD>k(KDdbi-c86)Xs@~)b$JcMmgyO|Le}GztbZ}iy!nUm7!TU_M3K_V;OVI zo6ccU{_tbjphE&&y0_MDYw>CuxJvFt_FsNf-rr1(d)KrEqD=1EQjrxdI`-BE;#D22Wi+R9MLnD%|~n! zL4rKTnhh!3_!E>hS|_Vo*Z98TnhkvttZ98QBo{%JM5_J8brs@9d<2tecX@TA=Gg2v zDQTj?#S?Z)OCdYBNn%HVAue5s-+m<-{BZpXGZ5iB>O6e+Oo`8!FtM*Yim9Yt7q@+}03}>0z2z^D%fzC>APp9N`DQd5v1!)$_3VT=5>*CV)7M}^0T-4%Wh|94x5R30;xXWre|aA z#TMmXQ9cGe%}PlM9nS)A<^rQvlp8#?`u_$^`xNgbbuzVu7ZCV2eg+`r{(tZp8!6z^ zRrKFg|EcuL2H@fO--2llYCb$^egxC5SH+CUw7z?(CTzJ>97G%$=FuZLjAjR%x0c=P zQg|ZjkIxiA}wU-jkt)=KZ_8{T3g{5lZL+GHef|VG$AP)Y_q5#X;S}}qwjDcmOn9%Dyg|_ zCBY^kbP0mh?7)xjbm20XI{xiFeU*>d09x;DV91WQtv zN`vpMd&YNxQnWUV*hM1d$f#gyWIFh7^W6MAN#MA^0ZeAMI!eqT>=Ou7F%%DQcwAa@ zw_|r2HC9+s*toCMnGj82($G-m{b0$E&EW|RML#*|>2OOT-;Hm!5c!d1ts|%uuvQ~= z!%5qahG6KXQKgT(NTZqWY@i;%w1r2}%0$+;7XwwSW3Ke+5VMG%A7plz86f7Q*O6Dz z43bW@8`Rn&#t`8l)xpW7t!bkrbz!u|rzx%P!^D%?pXuK$0bWlmIMv4MAVGj=V zWBuPv&bMZ^BTx6jI(os85xycRB7&(Sa@_>&r*tx6!@6l1;9N9i01Yr;Z$z6~iV{UP z{Z4ca^5>~km$dohf`NA2tT0%-5jS64Q-(bA;|6@? z)-0Em1GkXYUrX_%e!Q!m!m>?QD|PJ6_Ue4?5$Jzt?&z{*U6J*_nbcPD?AtDDHp(?o z+8oV=Ni<%o{2Hrx!%}baD*1l?l({kAP*ybPVo5rh6IFV@za(SFBTfin*Pos81lx=esh(fuL!-;SU(zvC7FEK~ojK zamXF7@m1TsYPC=lNBR`EkT(n+WWJF%``2jZLMm0pW}Bmpc(WxEmO_-%tt|ncw@~C(E@Q#^wtzHa95T5q*E}R`VwQ?@z3fW>RT`%s zW2JykJ~iE;;T2VBXpT`-uJf@WwKS^e-kxk}Zpsy$%?AMA29UC|!Lh%{DTPmWP>A<( zSJeM8sUYN9)1^``4fr+)IkXo65)N!$C2Xil*}81X@+p^|SR1}ou|Ft>8&w24p3RV3 zN^|2}GwN$b`gJ&7(?%DQ*t`?LHleHr4FzOpS?^K9u;uXM|M5J#y8(?2=k5SQOZO z@_lWUYk0hb6S(>mx32841ivJ^cXD3OS?O%+4yH^o!3P9Zpujt`rzbjarYPpDPXLar zCYFczUGblZk%um&FEy^zbMQ~@v)8}M<_jP1y(}?1bbxB>k#64u%mKdOA$XW_^mHn_6zP8YSM;?rBRhu>C&SSNWE;&oTA z7usZMKTYGB^Dd#UE8+(&-@&z>PSli*VuvR^h_y=F~>_V|l> z;_Bd-gL?N3tND?gb4MK1Bo|w+d5K)JeSk0^NM(K;W-z`0-<*~DC-z|y0ZF^Q961LR zzQpOkN4^TN_lp5BOX$^*`+Y`wO$p}l1=q(sE&#=O9JqyUu0|o$P~|dZnQn^uGVayJNRmtkzjRn3e4Ip7gh&w_iF0 zT6ZHQolb36;iKL97K?2pA})5{}HGH1V-2Fp4c z&Lj#O3;as8r_pN$thRnE^upzknrOx$1j;~Wc5| zS7w^IAJg3YOSqO4`Wk!U>j|hbmAV8A;8p5S7-xySM8F~Kk-*fFH$N-z$JNo9KHe}S z4KebX7$TNp3-jC>s}XuWI_TI`c1riY(M}Vt46YRDMye|(k@Cwv#M84+K-V_uYmMnN_!SZm$n zIstV1&L?C!;n_X`)5h~ zlNjXwS*Kv4VWC6nW#ev5YVG4};p%E(N$PB3W@ln$LC2!v>SXR=X5mWfY;O4(#spyI zU}Xky(Xq%|_;@+Fn!C}`!T;+{HcpNbpUfjtS_wWjRsc6EFDn-Sz{<_R&cMn>!^%qY z8K>xE{y&9ixSBXSTbO^+m`v>5EZ|vGG$eJHr9ABIO-&pfKj}@h8rC*$q@UZr`ol=7 zW#Q`f*)%CTGl1h$d4Y|KlZlO)>)-wSjQ@N#1shKb($7wDv6x$U(vjLZo48xMS(uP| z{-0~PnAw=w{;B$hFlFIr{!jY&pXT%$pTk1RqHJob?(P83qD0F6=^G(s#c*{Qg-sHNk^is6bW1uI-LaL|Mzq+x-g? z)p8SIyGy%>*xX=eZ}yH#nn?(61(kf3#y8pivfD{^D#TO;ni#sc0vk)ngAhE5EVW5H zfJzP&D2t8Jx>lFEwHXo9hO&TIxglw3NE~M$GAl}RCz30vrAR!~&9w+ZCp4U>1A-S~ zaCO%vs||VJ>pij5wqtM-<)}y|IC)YkI{6n?M0UOJ;0CNCU!XK}P^<*lje>&Sst`CR1Lare^cTkJjM-p$IQw04YK;S_SGXiF>9Qo!Dy~dL# z_FCGEs9V8>7Md>l3C-}LabbIB^vVx0{GMbYvvNpi4peWfS0&QeMN?vE(aPw2ZJMNx zp#8(L(uWW@oklc z>0!+hNGxkJ5hMPaE!|b@o|a)zkCmEdYli%e^lye?*?-;%q2F zs-z5C}PH;p=Is8VhzIN|v%O{d4T?+GM zD$UGK%}eMCt;NrL>Si84c=XHN{0e%zxJ})Aqj?$iD=hmtz>%*p$wBCMt+Lgaa8A3g zA!kL~$usZu9gu&_41O5M7nBT21wP^tCY;skt|hlTHYrs;d3$kXTOyuFdwAZ0$28nj zV~I^fBmiw>BljtcCYwg%?@I~UY(aH9+Fz9tQ4+V%vi34_e{L7q{eqoWtU8u)bdAKP_)`-Ie#T22}~-+7`MD5D461SRCk3Vz$a8%W16}j>d{=5d{gItM)E+Y9 z7`)IC>}UKGAUWfc6;1J7wnvD?BJdkF~l*HgH0;ZwBI zex)wl&|;u%w*@#!1Cf**?`iDy6nYnd`{;sGkj_$Z?dqz4l9DXC>`l z^}AtHHtTggejzCwSAFGMJTjhatL6=td>r<_6rc}qP>aCJf0M!d zr^?d5KE66?7MAcVvX15!-lY1hq@1jV@GR;!z80S)couC^eE{j_#LnkAH76%`QjUM@ zp49#cw{#-q_$M9u=Rkr~UqFDO43V`$*un38iJzD0@~BV03FVkXu5v(Zrl8DOxY z#BGd{MKLcpl^6Pg>@QH*qqN0{^Dp)qQRdl~U}V&|CJA(wxTfC#88WOQP?`%W(hziP z<@_J^wtm-bEq#7#^u3!2O5yF_Pp8)ADQ*sYiMs=88%CsnrN^mjB(vJ6wEzDgySbaV Wx_f^nd+=PWyq}{;MJ1^$1^-{iv&o47 literal 0 HcmV?d00001 diff --git a/diagram_paths2.tex b/diagram_paths2.tex new file mode 100644 index 0000000000000000000000000000000000000000..9801516a32ded34b20db50ebddf6a41973d5a555 --- /dev/null +++ b/diagram_paths2.tex @@ -0,0 +1,107 @@ +\documentclass{standalone} +\usepackage[T1]{fontenc} +\usepackage{amsmath} +\usepackage{amsfonts} +\usepackage{parskip} +\usepackage{marvosym} %Lightning symbol +\usepackage[usenames,dvipsnames]{color} +\usepackage[hidelinks]{hyperref} +\renewcommand*{\familydefault}{\sfdefault} + +\usepackage{bbm} %For \mathbbm{1} +%\usepackage{bbold} +\usepackage{tikz} + +\begin{document} + +\begin{tikzpicture} + \def\height{4}; + \draw[step=1cm,gray,dotted] (-0.9,-0.9) grid (8.9,\height+0.9); + + % + % Red line through grid + % + \draw [line width=3.0,red] (0,0) -- (0,1) -- (1,1) -- (2,1) -- (2,2); + + % + % Arrows of the grid + % + \foreach \x in {0,...,7} { + \foreach \y in {1,...,\height} { + \draw[->] (\x,\y-1) -- (\x+0.9,\y-1); + \draw[->] (\x,\y-1) -- (\x,\y-1+0.9); + } + \draw [->] (\x,\height) -- (\x+0.9,\height); + } + \foreach \y in {1,...,\height} %somehow the loop cant go to '\height-1' + \draw [->] (8,\y-1) -- (8,\y-1+0.9); % so we fix it like this with '\y-1' + + % + % Move labels + % + \foreach \y in {1,...,\height} { + \draw (-1, \y - 0.5) node {$(z_\y',s_\y',r_\y')$}; + } + \foreach \x in {1,...,8} { + \draw (\x-0.6, -1.4) node[rotate=70] {$(z_\x,s_\x,r_\x)$}; + } + + % + % bitstring labels + % + + \draw(-0.1,-0.4) node {$b_1\land b_2$}; + \draw(8.2,-0.4) node {$\mathbf{1} \land b_2$}; + \draw (-0.2,\height+0.3) node {$b_1\land\mathbf{1}$}; + \draw (8.2,\height+0.3) node {$\mathbf{1}$}; + + + % + % -> steps of xi + % + + \draw (4,-2.5) node {$\to$ steps of $\xi_1$}; + \node[rotate=90,anchor=south,xshift=2cm,yshift=1.9cm] {$\to$ steps of $\xi_2$}; + + % + % (Red) circles + % + + \draw[fill,red] (0,0) circle (0.08); + \draw[fill ] (8,0) circle (0.05); + \draw[fill ] (0,\height) circle (0.05); + \draw[fill,red] (8,\height) circle (0.08); + + % + % Probability labels + % + + \def\x{6}; + \def\y{3}; + \draw[fill,black] (\x,\y) circle (0.07); + \draw[fill=white,draw=black] (\x+0.23,\y-0.26) rectangle +(0.5,0.5); + \draw[fill=white,draw=black] (\x-0.55,\y+0.26) rectangle +(1.1,0.5); + \draw (\x+0.5,\y) node {$p_{ij}$}; + \draw (\x,\y+0.5) node {$1-p_{ij}$}; + + \def\x{2}; + \def\y{1}; + \draw[fill,black] (\x,\y) circle (0.07); + \draw[fill=white,draw=black] (\x+0.12,\y-0.26) rectangle +(0.7,0.5); + \draw[fill=white,draw=black] (\x-0.75,\y+0.26) rectangle +(1.5,0.5); + \draw (\x+0.5,\y) node {$p_{3,2}$}; + \draw (\x,\y+0.5) node {$1-p_{3,2}$}; + + \def\x{8}; + \def\y{1}; + \draw[fill,black] (\x,\y) circle (0.07); + \draw[fill=white,draw=black] (\x-0.25,\y+0.26) rectangle +(0.5,0.5); + \draw (\x,\y+0.5) node {$1$}; + + \def\x{3}; + \def\y{\height}; + \draw[fill,black] (\x,\y) circle (0.07); + \draw[fill=white,draw=black] (\x+0.25,\y-0.25) rectangle +(0.5,0.5); + \draw (\x+0.5,\y) node {$1$}; +\end{tikzpicture} +\end{document} diff --git a/main.tex b/main.tex index 7703efa6d99c75d3f583e237c82b9d432c48512a..2c1d611a06586de104dbf85fd91e513423ea577b 100644 --- a/main.tex +++ b/main.tex @@ -474,64 +474,57 @@ The lemma says that conditioned on $j_1$ and $j_2$ not being crossed, the two ha &= \frac{1}{z_1} \P(r_1) \frac{1}{z_2} \P(r_2) \cdots \frac{1}{z_{|\xi|}} \P(r_{|\xi|}) . \end{align*} To construct $\xi_1$ and $\xi_2$, start with empty sequences $\xi_1,\xi_2$ and for each step $(z_i,s_i,r_i)$ in $\xi$ do the following: if $s_i$ is ``on the $b_1$ side of $j_1,j_2$'' then add $(z^{(1)}_i,s_i,r_i)$ to $\xi_1$ and if its ``on the $b_2$ side of $j_1,j_2$'' then add $(z^{(2)}_i,s_i,r_i)$ to $\xi_2$. Here $z^{(1)}_i$ is the number of zeroes that were on the $b_1$ side and $z^{(2)}_i$ is the number of zeroes on the $b_2$ side so we have $z_i = z^{(1)}_i + z^{(2)}_i$. - Let the resulting paths be - \begin{align*} - \xi_1 &= \left( (z^{(1)}_{a_1}, s_{a_1}, r_{a_1}), (z^{(1)}_{a_2}, s_{a_2}, r_{a_2}), ..., (z^{(1)}_{a_{|\xi_1|}}, s_{a_{|\xi_1|}}, r_{a_{|\xi_1|}}) \right) \\ - \xi_2 &= \left( (z^{(2)}_{b_1}, s_{b_1}, r_{b_1}), (z^{(2)}_{b_2}, s_{b_2}, r_{b_2}), ..., (z^{(2)}_{b_{|\xi_1|}}, s_{b_{|\xi_1|}}, r_{b_{|\xi_1|}}) \right) - \end{align*} + %Let the resulting paths be + %\begin{align*} + % \xi_1 &= \left( (z^{(1)}_{a_1}, s_{a_1}, r_{a_1}), (z^{(1)}_{a_2}, s_{a_2}, r_{a_2}), ..., (z^{(1)}_{a_{|\xi_1|}}, s_{a_{|\xi_1|}}, r_{a_{|\xi_1|}}) \right) \\ + % \xi_2 &= \left( (z^{(2)}_{b_1}, s_{b_1}, r_{b_1}), (z^{(2)}_{b_2}, s_{b_2}, r_{b_2}), ..., (z^{(2)}_{b_{|\xi_1|}}, s_{b_{|\xi_1|}}, r_{b_{|\xi_1|}}) \right) + %\end{align*} Now $\xi_1$ is a valid (terminating) path from $b_1$ to $\mathbf{1}$, because in the original path $\xi$, all zeroes ``on the $b_1$ side'' have been resampled by resamplings ``on the $b_1$ side''. Since the sites $j_1,j_2$ inbetween never become zero, there can not be any zero ``on the $b_1$ side'' that was resampled by a resampling ``on the $b_2$ side''. - The probability of $\xi_1$, started from $b_1$, is given by - \begin{align*} - \P_{b_1}[\xi_1] &= \P(\text{choose }s_{a_1}) \P(r_{a_1}) \P(\text{choose }s_{a_2}) \P(r_{a_2}) \cdots \P(\text{choose }s_{a_{|\xi|}}) \P(r_{a_{|\xi|}}) \\ - &= \frac{1}{z^{(1)}_{a_1}} \P(r_{a_1}) \frac{1}{z^{(1)}_{a_2}} \P(r_{a_2}) \cdots \frac{1}{z^{(1)}_{a_{|\xi|}}} \P(r_{a_{|\xi|}}) - \end{align*} - and similar for $\xi_2$. - Vice versa, all paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}^{(j_1,j_2)}$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}^{(j_1,j_2)}$ also induce a path $\xi\in\paths{b} \cap \mathrm{NZ}^{(j_1,j_2)}$ by simply interleaving the resampling positions. Note that $\xi_1,\xi_2$ actually induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths $\xi$ because of the possible orderings of interleaving the resamplings in $\xi_1$ and $\xi_2$. The following diagram illustrates all possible interleavings: - \begin{center} - \includegraphics{diagram_paths.pdf} - \end{center} - A particular interleaving is a path through the above grid. So for a fixed $\xi_1,\xi_2$ there are $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ possible interleavings $\xi$, and vice versa there are $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths $\xi$ that decompose into the same $\xi_1$ and $\xi_2$. For a fixed $\xi_1,\xi_2$ we now show the following: + Vice versa, any two paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}^{(j_1,j_2)}$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}^{(j_1,j_2)}$ also induce a path $\xi\in\paths{b} \cap \mathrm{NZ}^{(j_1,j_2)}$ by simply interleaving the resampling positions. Note that $\xi_1,\xi_2$ actually induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths $\xi$ because of the possible orderings of interleaving the resamplings in $\xi_1$ and $\xi_2$. + For a fixed $\xi_1,\xi_2$ we will now show the following: \begin{align*} \sum_{\substack{\xi\in\paths{b} \cap \mathrm{NZ}^{(j_1,j_2)} \text{ s.t.}\\ \xi \text{ decomposes into } \xi_1,\xi_2 }} \P_b[\xi] &= \sum_{\text{interleavings of }\xi_1,\xi_2} \P(\text{interleaving}) \cdot \P_{b_1}[\xi_1] \cdot \P_{b_2}[\xi_2] \\ &= \P_{b_1}[\xi_1] \cdot \P_{b_2}[\xi_2] \end{align*} - This is best explained by an example. We have, for an example interleaving: + where both sums are over $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ terms. + This is best explained by an example. Lets consider the following fixed $\xi_1,\xi_2$ and an example interleaving where we choose steps from $\xi_2,\xi_1,\xi_1,\xi_2,\cdots$: + \begin{align*} + \xi_1 &= \left( (z_1, s_1, r_1), (z_2, s_2, r_2), (z_3, s_3, r_3), (z_4, s_4, r_4),\cdots \right) \\ + \xi_2 &= \left( (z_1', s_1', r_1'), (z_2', s_2', r_2'), (z_3', s_3', r_3'), (z_4', s_4', r_4'),\cdots \right) \\ + \xi &= \left( (z_1 + z_1', s_1', r_1'), (z_1+z_2', s_1, r_1), (z_2+z_2', s_2, r_2), (z_3+z_2', s_2', r_2'), \cdots \right) + \end{align*} + The probability of $\xi_1$, started from $b_1$, is given by \begin{align*} - \xi &= \left( (z_1, s_1, r_1), (z_2, s_2, r_2), (z_3, s_3, r_3), (z_4, s_4, r_4), \cdots \right) \\ - \xi_1 &= \left( (z^{(1)}_1, s_1, r_1), \phantom{(z^{(2)}_2, s_2, r_2), (z^{(1)}_3, s_3, r_3),} (z^{(1)}_4, s_4, r_4),\cdots \right) \\ - \xi_2 &= \left( \phantom{(z^{(1)}_1, s_1, r_1),} (z^{(2)}_2, s_2, r_2), (z^{(2)}_3, s_3, r_3),\phantom{(z^{(2)}_4, s_4, r_4), } \cdots \right) + \P_{b_1}[\xi_1] &= \P(\text{choose }s_1) \P(r_{a_1}) \P(\text{choose }s_2) \P(r_{a_2}) \cdots \P(\text{choose }s_{|\xi_1|}) \P(r_{|\xi_1|}) \\ + &= \frac{1}{z_1} \P(r_1) \frac{1}{z_2} \P(r_2) \cdots \frac{1}{z_{|\xi_1|}} \P(r_{|\xi_1|}) . \end{align*} - Remember $z^{(1)}_i + z^{(2)}_i = z_i$. - The probability associated to this interleaving is + and similar for $\xi_2$ but with primes. + The following diagram illustrates all possible interleavings, and the red line corresponds to the particular interleaving $\xi$ in the example above. + \begin{center} + \includegraphics{diagram_paths2.pdf} + \end{center} + For the labels shown within the grid, define $p_{ij} = \frac{z_i}{z_i + z_j'}$. + The probability of $\xi$ is given by \begin{align*} - \P_b[\xi] &= \frac{1}{z_1} \P(r_1) \frac{1}{z_2} \P(r_2) \frac{1}{z_3} \P(r_3) \frac{1}{z_4} \P(r_4) \cdots \\ + \P_b[\xi] &= \frac{1}{z_1+z_1'} \P(r_1') \frac{1}{z_1+z_2'} \P(r_1) \frac{1}{z_2+z_2'} \P(r_2) \frac{1}{z_3+z_2'} \P(r_2') \cdots \tag{by definition}\\ &= - \frac{z^{(1)}_1}{z_1} \frac{1}{z^{(1)}_1} \P(r_1) \; - \frac{z^{(2)}_2}{z_2} \frac{1}{z^{(2)}_2} \P(r_2) \; - \frac{z^{(2)}_3}{z_3} \frac{1}{z^{(2)}_3} \P(r_3) \; - \frac{z^{(1)}_4}{z_4} \frac{1}{z^{(1)}_4} \P(r_4) - \cdots \\ + \frac{z_1'}{z_1+z_1'} \frac{1}{z_1'} \P(r_1') \; + \frac{z_1 }{z_1+z_2'} \frac{1}{z_1 } \P(r_1 ) \; + \frac{z_2 }{z_2+z_2'} \frac{1}{z_2 } \P(r_2 ) \; + \frac{z_2'}{z_3+z_2'} \frac{1}{z_2'} \P(r_2') + \cdots \tag{rewrite fractions}\\ &= - \frac{z^{(1)}_1}{z_1} - \frac{z^{(2)}_2}{z_2} - \frac{z^{(2)}_3}{z_3} - \frac{z^{(1)}_4}{z_4} + \frac{z_1'}{z_1+z_1'} \; + \frac{z_1 }{z_1+z_2'} \; + \frac{z_2 }{z_2+z_2'} \; + \frac{z_2'}{z_3+z_2'} \cdots - \P_{b_1}[\xi_1] \P_{b_2}[\xi_2] - \end{align*} - \todo{write more} - \begin{align*} - \P(\text{interleaving}) = \P(\text{choose step of }\xi_1) \P(\text{choose step of }\xi_2) \P(\text{choose step of }\xi_2) \P(\text{choose step of }\xi_1) \cdots - \end{align*} - These choices depend on the number of zeroes present in the state: - \begin{align*} - \P(\text{choose step of }\xi_1) &= - \frac{z^{(1)}_1}{z^{(1)}_1 + z^{(2)}_1} \\ - \P(\text{choose step of }\xi_2) &= - \frac{z^{(2)}_1}{z^{(1)}_1 + z^{(2)}_1} + \P_{b_1}[\xi_1] \; \P_{b_2}[\xi_2] \tag{definition of $\P_{b_i}[\xi_i]$} \\ + &= (1-p_{1,1}) \; p_{1,2} \; p_{2,2} \; (1-p_{3,2}) \; \P_{b_1}[\xi_1] \; \P_{b_2}[\xi_2] \tag{definition of $p_{i,j}$} \\ + &= \P(\text{path in grid}) \; \P_{b_1}[\xi_1] \; \P_{b_2}[\xi_2] \end{align*} - These are the $p_i$ and $1-p_i$ shown in the grid diagram. In $\P_{b_1}[\xi_1]$ we have a factor $\frac{1}{z^{(1)}_1}$, so together with the probability above this gives $\frac{z^{(1)}_1}{z^{(1)}_1 + z^{(2)}_1} \frac{1}{z^{(1)}_1} = \frac{1}{z_1}$, as in the original expression for $\P_b[\xi]$. In the grid we see that at every point the probabilities sum to 1, and we always reach the end, so we know the sum of all paths in the grid is 1. This means the sum of all $\P(\text{interleaving})$ is equal to 1. + In the grid we see that at every point the probabilities sum to 1, and we always reach the end, so we know the sum of all paths in the grid is 1. This proves the required equality. We obtain \begin{align*}