diff --git a/main.tex b/main.tex index 9b934ebb3039d29eee602ca1fc2a64e9e9268da9..0619df62d963e228d7dee8961bdd2c7ec5f6aca3 100644 --- a/main.tex +++ b/main.tex @@ -826,6 +826,64 @@ Note by Tom: So $A^{(\mathcal{P})}$ is the event that the set of all patches is \item Can we prove the conjectured formula for $a_k^{(3)}$? \end{itemize} + \begin{lemma}On the infinite chain + $$\P_I(Z^{0}\cap Z^{k})=\P_I(Z^{0})\P_I(Z^{k})+\mathcal{O}(p^{k-|b|+1})$$ + \end{lemma} + Note that using De Morgan's law and the inclusion-exclusion formula we can see that this is equivalent to saying: + $$\P_I(NZ^{0}\cap NZ^{k})=\P_I(NZ^{0})\P_I(NZ^{k})+\mathcal{O}(p^{k-|b|+1})$$ + \begin{proof} + We proceed by induction on $|I|$. For $|I|=0,1$ the statement is trivial. + + Now observe that: + $$\P_I(Z^{0})=\sum_{P\text{ patch}\,:\,0\in P}\P_I(P\in\mathcal{P})$$ + $$\P_I(Z^{k})=\sum_{P\text{ patch}\,:\,k\in P}\P_I(P\in\mathcal{P})$$ + + Suppose $|I|\geq 2$, then we proceed using induction similarly to the above + \begin{align*} + &\P_I(Z^{0}\cap Z^{k})\\ + &=\sum_{\underset{P_l^{\max}+1 I <}(NZ^{P_l^{\max}+1}\cap NZ^{P_r^{\min}-1}) + \P_{I\cap P_r}(P_r\in\mathcal{P}) + +\mathcal{O}(p^{k+1})\\ + &\overset{\text{induction}}{=}\sum_{\underset{P_l^{\max}+1 I <}(NZ^{P_l^{\max}+1})\P_{> I <}(NZ^{P_r^{\min}-1}) + \P_{I\cap P_r}(P_r\in\mathcal{P}) + +\mathcal{O}(p^{k-|I|+1})\\ + &\overset{Lemma~\ref{lemma:probIndep}}{=}\sum_{\underset{P_l^{\max}+1