diff --git a/main.tex b/main.tex index af2bd5aa5e7d5df7f31a82e70ea28f3e6fe66aa6..efc84dbb86206c78086ffdc2cbde7b352cda1299 100644 --- a/main.tex +++ b/main.tex @@ -618,16 +618,15 @@ Here, I (Tom) tried to set do the same Lemma but for the circle instead of the i Without loss of generality, we can assume that $0=j < i_* < s < n$. We will now consider intervals around vertex 0. For $l,r\geq 1$ and $l+r\leq n$, define the event ``zeroes patch'' $\mathrm{ZP}^{[-l,r]_0}$ as the event of getting zeroes inside the interval $[-l,r]_0$ but not on the boundary, i.e. $$\mathrm{ZP}^{[-l,r]_0} = \NZ{-l} \cap \Z{-l+1} \cap \cdots \cap \Z{0} \cap \cdots \cap \Z{r-1} \cap \NZ{r}$$ - Note that there are $r+l-1$ `zeroes' in this event, so $\P_{J}(\mathrm{ZP}^{[-l,r]_0}) = \mathcal{O}(p^{r+l-1-|J|})$ for $J\subseteq[-l,r]_0$. + Note that there are $r+l-1$ `zeroes' in this event, so $\P_{J}(\mathrm{ZP}^{[-l,r]_0}) = \mathcal{O}(p^{r+l-1-|J|})$ for $J\subseteq[-l,r]_0$ is a lower bound on the order of $p$.\\ Claim: \begin{align*} \P_{I}(\mathrm{ZP}^{[-l,r]_0}) &= \P_{I'}(\mathrm{ZP}^{[-l,r]_0}) - + \mathcal{O}(p^{\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right)+l+r-|I|}) + + \mathcal{O}(p^{d(i_*,0)+1-|I|}) \end{align*} - \todo{These special cases.} - If $r\geq i_*$ or $l\geq n-i_*$ then $\P_{I}(\mathrm{ZP}^{[-l,r]_0}) = \mathcal{O}(p^{d(i_*,0) + 1 - |I|})$. - If $-l\in I$ or $r\in I$ then the left hand side is zero so the claim holds. - If $[-l,r]_0$ has no overlap with $I$ then both sides of the above expression are zero so it also holds. We are left with the case where, $-l,r,\notin I$ and $[-l,r]_0 \cap I \neq \emptyset$ and $i_*\notin[-l,r]_0$. + If $r\geq i_*$ or $l\geq n-i_*$ then $\P_{I}(\mathrm{ZP}^{[-l,r]_0}) = \mathcal{O}(p^{d(i_*,0) + 1 - |I|})$ and also $\P_{I'}(\mathrm{ZP}^{[-l,r]_0}) = \mathcal{O}(p^{d(i_*,0) + 1 - |I|})$ so then the claim holds. + If $-l\in I$ or $r\in I$ (and $-l,r$ are both not $i_*$ because of the previous point) then the probability of $\mathrm{ZP}^{[-l,r]_0}$ is zero for both $I$ and $I'$ so the claim holds. + If $[-l,r]_0$ has no overlap with $I$ then both sides are also zero so it also holds. We are left with the case where: $-l,r,\notin I$ and $[-l,r]_0 \cap I \neq \emptyset$ and $i_*\notin[-l,r]_0$. The following diagram illustrates the situation \begin{center} \includegraphics{diagram_circle_lemma.pdf} @@ -664,9 +663,12 @@ Here, I (Tom) tried to set do the same Lemma but for the circle instead of the i &= \P_{I'}(\mathrm{ZP}^{[-l,r]_0}) + \mathcal{O}(p^{\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right)+l+r-|I|}) \end{align*} - Case separation shows that $\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right) \geq d(i_*,0) + 1$ \todo{prove.} + Where we used Claim~\ref{claim:eventindependence} again. + Case separation shows that + $$\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right) + l +r \geq d(i_*,0) + 1$$ + which proves the claim. - Now we can prove the required equalities: + The first equality that we have to prove now follows from the fact that the ``zeroes patch'' events are a partition of $\Z{0}$: \begin{align*} \P_{I}(\Z{0}) &=\sum_{\substack{l,r\geq 1\\l+r\leq n}} @@ -674,7 +676,8 @@ Here, I (Tom) tried to set do the same Lemma but for the circle instead of the i \tag{the events are a partition of $\Z{0}$}\\ &=\sum_{\substack{l,r\geq 1\\l+r\leq n}} \P_{I'}(\mathrm{ZP}^{[-l,r]_0}) - + \mathcal{O}(p^{\min\left( \dist{r}(i_*,-l) , d(i_*,r)\right)+l+r-|I|}) \\ + + \mathcal{O}(p^{d(i_*,0)+1-|I|}) + \tag{by claim} \\ &= \P_{I'}(\Z{0}) + \mathcal{O}(p^{d(i_*,0)+1-|I|}) \end{align*} Similarly, we have @@ -683,13 +686,35 @@ Here, I (Tom) tried to set do the same Lemma but for the circle instead of the i &=\sum_{l=1}^{n-s}\sum_{r=1}^{s} \P_{I}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) \tag{partition of $\Z{0}$}\\ + &=\sum_{l=1}^{n-s}\sum_{r=1}^{i_*-1} + \P_{I}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) + +\mathcal{O}(p^{\dist{s}(i_*,0)+1-|I|}) \\ + &=\sum_{l=1}^{n-s}\sum_{r=1}^{i_*-1} + \P_{I\cap[s,r]_0}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) \cdot + \P_{I\setminus [s,r]_0}(\NZ{r},\NZ{s}) + +\mathcal{O}(p^{\dist{s}(i_*,0)+1-|I|}) + \tag{Claim~\ref{claim:eventindependence}}\\ + &=\sum_{l=1}^{n-s}\sum_{r=1}^{s} + \P_{I'\cap[s,r]_0}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) \cdot + \P_{I\setminus [s,r]_0}(\NZ{r},\NZ{s}) + +\mathcal{O}(p^{\dist{s}(i_*,0)+1-|I|}) + \tag{$i_*\in I \setminus[s,r]_0$}\\ + &=\sum_{l=1}^{n-s}\sum_{r=1}^{s} + \P_{I'\cap[s,r]_0}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) \cdot + \P_{I'\setminus [s,r]_0}(\NZ{r},\NZ{s}) \\ + &\qquad +\mathcal{O}(p^{\min\left( \dist{r}(i_*,s) , d(i_*,r)\right)+l+r-|I|}) + +\mathcal{O}(p^{\dist{s}(i_*,0)+1-|I|}) + \tag{same argument as before}\\ &=\sum_{l=1}^{n-s}\sum_{r=1}^{s} - \P_{I'}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) - + \mathcal{O}(p^{something}) \\ + \P_{I'\cap[s,r]_0}(\mathrm{ZP}^{[-l,r]_0},\NZ{s}) \cdot + \P_{I'\setminus [s,r]_0}(\NZ{r},\NZ{s}) \\ + &\qquad + +\mathcal{O}(p^{\dist{s}(i_*,0)+1-|I|}) + \tag{case separation \todo{does not seem to work?}}\\ &= \P_{I'}(\Z{0} , \NZ{s}) - + \sum_{l=1}^{n-s}\sum_{r=1}^{s} + \mathcal{O}(p^{something}) + +\mathcal{O}(p^{\dist{s}(i_*,0)+1-|I|}) \end{align*} - \todo{finish details} + This finishes the proof. \end{proof} \begin{definition}[Connected patches]