diff --git a/main.tex b/main.tex index 88768eec07d4f2bc9f68601c108984e59252153f..aa1c6dc8c92d6e7c91986b2a82640340e5b08cca 100644 --- a/main.tex +++ b/main.tex @@ -620,6 +620,8 @@ The intuition of the following lemma is that the far right can only affect the z $\P^{[n]}(\Z{1})-\P^{[m]}(\Z{1}) = \bigO{p^{\min(n,m)}}$. (Should be true with $\bigO{p^{\min(n,m)+1}}$ too.) \end{corollary} + The intuition of the following lemma is simmilar to the previous. The events on the two sides should be independent unless an interaction chain is forming, implying that every vertex gets resampled to $0$ at least once. + \begin{lemma}\label{lemma:independenetSidesNew} $$\P^{[k]}(\Z{1}\cap \Z{k})=\P^{[k]}(\Z{1})\P^{[k]}(\Z{k})+\bigO{p^{k}}=\left(\P^{[k]}(\Z{1})\right)^2+\bigO{p^{k}}.$$ \end{lemma} @@ -667,6 +669,8 @@ The intuition of the following lemma is that the far right can only affect the z +\bigO{p^{k}}. \end{align*} \end{proof} + + Again the intuition of the final theorem is simmilar to the previous lemmas. A site can only realise the length of the cycle after an interaction chain was formed around the cycle, implying that every vertex was resampled to $0$ at least once. \begin{theorem} $R^{(n)}-R^{(m)}=\bigO{p^{\min(n,m)}}$. @@ -684,17 +688,17 @@ The intuition of the following lemma is that the far right can only affect the z \begin{align*} R^{(n)} &= \E^{(n)}(\Res{1}) \tag{by translation invariance}\\ - &= \sum_{k=1}^{\infty}\P^{(n)}(\Res{1}\geq 1) \\ - %&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r-1}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq 1\,\&\, [\ell+1,r-1]\in\mathcal{P}) \tag{partition}\\ - %&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq 1\,\&\, [\ell+1,r-1]\in\mathcal{P}) +\bigO{p^{n}} \\ - %&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{[l,r]}_{b_{\ell}=b_{r}=1}(\Res{1}\geq 1\,\&\, [\ell+1,r-1]\in\mathcal{P}) \P^{[r,\ell]}(\NZ{\ell,r}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\ - &= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{(n)}(\Res{1}\geq 1\,\&\, P\in\mathcal{P}) \tag{partition}\\ - &= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|