diff --git a/main.tex b/main.tex index e428444ca33218401baed0a5adf45764d4b9b0a8..4f050f48beeb07256a19c6dde8c0bdee9ca9ed90 100644 --- a/main.tex +++ b/main.tex @@ -176,9 +176,11 @@ \item $\forall k\in\mathbb{N}, \forall n\geq 3 : a^{(n)}_k\geq 0$ \label{it:pos} (A simpler version: $\forall k>0: a_k^{(3)}=(k+1)(k+2)/6$) \item $\forall k\in\mathbb{N}, \forall n>m\geq 3 : a^{(n)}_k\geq a^{(m)}_k$ \label{it:geq} - \item $\forall k\in\mathbb{N}, \forall n,m\geq \max(k,3) : a^{(n)}_k=a^{(m)}_k$ \label{it:const} + \item $\forall k\in\mathbb{N}, \forall n,m > \max(k,3) : a^{(n)}_k=a^{(m)}_k$ \label{it:const} \item $\exists p_c=\lim\limits_{k\rightarrow\infty}1\left/\sqrt[k]{a_{k}^{(k+1)}}\right.$ \label{it:lim} \end{enumerate} + \colorbox{red}{\ref{it:pos}-\ref{it:geq} is false since $a_{1114}^{(10)}<0$ -- needs to be double checked!} + We also conjecture that $p_c\approx0.61$, see Figure~\ref{fig:coeffs_conv_radius}. \begin{figure}[!htb]\centering