From 0aef3bd8b29260a958f3b682bf8e633ebfd5cbbf 2017-06-01 18:00:11 From: Tom Bannink Date: 2017-06-01 18:00:11 Subject: [PATCH] Add more diagrams --- diff --git a/diagram_gap.pdf b/diagram_gap.pdf index 0b6917ca59d27333377cc16e70db3c83a2a668c1..cbc8c97975c049ee49408fd7c9762b99a0c1367e 100644 GIT binary patch delta 21857 zcmY(~Q*fXS&?Vs5&cwFuiJggU+qT}=wrv{|+n6{LCllLF_WNtMYIiTXsxQw)U!8h7 zqyTIw2P}acjFTlFJ6=sGr_Avr_k+b#U{dKnn zJP$y~PVYAND^-?lo2q;^@0^^bx}ZId>&G10UnpF4tPP}_7(x#ZANP(SIj_@}ZwA)a zboBjop!j+ly{5+;n6;R9kKMdr82+ke8I0wpg+If;d;OewZ?LV|egX)c_5C%=KU->I zI@cCVV0pEnuAPW*V&>ZZ=|Zv>uEQ))P@L1Wk}}x_48f74a)v_dhzNcvq(=z zRlHsa?*RSdv*CNTAA(8|%7RHxkH5^LLS=R4>~(HJ|HwyQ==oM0dvZTMy=UW+VfWB& zG#6&-Xl9ube()?A6bu9d*CIan)#gWWF7_%emHIInKQo?jy$$tyA4q9bb%N>iY^x9j z-p0vU-8VvbIE|TcrvJnu<+es(RGN_z%p!cFFe~?08wNYKG6cLBcPAO+^Ygj*$`%ZR zx|EtXPH-M?qbHAhs*Rc?$wM6d6F&}UjlikoAk`Sm`jy7lS!a;$8)yf zqU~G=tmBizTk~Br#t`UIA}LX)2*vYPV}7Wc4}{^npi+Y3&twKDQ6`V%^knApDwiT~ z?McuakDH6g{{iA-$Q^9Nvbe!%*3_*LHTq4VP@?afoZgw?z_0uI-*sLVWv5EfKhUksoGl6(#aN?VP0tR zsI?ZrwRNiYn2Lk4(IGhEPaDr}yK5P#O(vwUZ7_B)&;erzF*Oh7Diz{QLB(8HM2i^A zm7pE?)j2vMMP}|7Mjh_rnS0YGjZ?W5Ad)VWhA9)K{}ZC-{||xRP`IY8l0=4CuH!+i zTo>SF4JtKjHW8I@a*te~z<_BMmdo5pDaMxv%@F(QYYOM$-pXsEmBdQE4oIA)jkg^< zVSh=%BJmRWCZy~N!SOsgL&{pqR#r-=sWL~VWjYx?Tx7EjWiC{yTH|K?G72~_#B_OT zn}VxW4lB`Jb9K~FkHhiQojqhi613H9)dkgI3G?fv(u=YC(M1dEqdhpOs=fwiBAtW= z$(_XpS}aQ$&BL>?YMM=M21r!JCNTsmskI@0DW%@2HufOV8&=zNZb4Xxa}$qyRDu2Y zDbnUX(7w`wqsqySkR>a;V96{sQk9^@PbUEDmFdi7XFP@qv(B=RSy5fXSA{7%5ccX2 zsPj54U+QoEGnIabErq~O*%mGdDN&g5GBkDyc&b_`U5X?aBeosW1T22n-Q9J#=QWpp zA0Ds@`hH)n;fPu2)PHh6tU=?Qxr(X&**l^raD2`qupM$@`mteRXB;?FRGtL<(Gd+@ZOTE0ZWzuIT8p%`F)5Tros_ z&xJ8vYh{g(V&-T5D_pR2BDh3aWtWF$Xe9w*e}#6KgCF&tf*F z3>sTfZHKF6`&8M`{qQ5pB@>3Ck6FIm)`Bu4JWd zpm;j@@pu9Olvne-=MrK|G_@$;pz-Ln|1*R@EYDT}*JxgskO0eF-GEFxbalNf1ua+O z##i(E{tZDhFS9-vJ}G_G=-hS~YB_x;4f#XApJ`|B7!b4p-F9*j*13YM)7NOq+o<67 zmZXu_XT}coIH~=E)cRId@0nK^DQh3`Y39|(#{h4qM;pQs6dmwANm5}UMLpFZ`p8|k z;p5#bdL7JnR-a0kKHkZ_4MQM$+)h+K^<{_ZgdLAo(yv0#{YyfhkT9R9_Y2eRfjE5W z7+}br0nG0{7Vq{PfbX;Lix7Ai>NY@G#pE2%x@X=t?Q>-Nez`W@Aa{@JAon*_I?B>+__3}PO^zC7j zd7ys-*ympB5n{bzb|jAHr)`Adx!J$D(Y0Hz5{uz)*26kp5EQ8%=0Gc0E@qkniaqeD5AwsZ^u zoI&2<9s0fb?I;&TR#Nntd6S2n*HxpW^y#rEVq^}y{B@f(t?!#LyzxRb=*ODW>FSIw zkDs8rm2B0fLq9tc62}G|^y31Km_6@MdoR2VS&Wu@=^P zT;XkG0>g|s2E%U8Z+~A_Ag#s@CR!emhYt09*Y#b0&Ls+hbXzCuz?s>by0|)<8QJ~M z=3s0M$I9Fs0F#Xe%9BnvYK8)vdYJQWbz z4ymZSvA`K)o@<>Ls2Z8**hKD29(x{1EIB?2=5du1;SJ`fD?%kh1j=Xm>l z`}w=Nx88mEVtGs9`Aq-wp^BeA<~P))^Aod90xLq)?$PlcIyANA>HR(E%L|0pf8(gB zi7)^Ib3(*{6wLy2g%l<{@(nEn3Lt@z61qhR4U@^kLqS&f2!VVAf%v03`71dI2n2u- z<*)SxFn4eZp`O6DL0jH}EEy>#@FGQnO)o5D_cKvaPClmd3e7@7 zKyQE+f-n#d!v4GKC?-GwV-8pk6o$$Fh8ti!4H4>yy1(=G^121l+w?MY1SGAH7z41d z_aNq>JA-%gh<*C=gFycZVa@NP-tIPlAmsL60q2N@NH9#q_z<3|LjCT<74OC2&`X36 z(0ukt%!-Q;CmlfrKrqKQlq2XD4<3jh@^|0R=fNix3iew%+x#rj(LP+rTR>qP2sASU z#JtkVKVeU@4iKS=PaYMSx!CC+tGL-pTcY4fPWK{6fX=SM&)N6kqe{ zxWg45uqPzu7y*dmX>-0$@P%Oln2Ct;D>8^d{y~9wZSdTF!8)7(2XJpwn!*A3 zbki8SH<}RCAQvFszI!j7;QYcM5S!pXcAo_izZv#!?!hkx++hM3#!(SQUKJiBImY)K zUK?K>8@T#&t`mJeKzaq|`ZUtwADY62Nd&$Fzn2a45!v|3$lPZ8=)T(J^a+m;Zw@f` z!5!gY{yU8C1lb3`3H4^j$Te^mSa>1owN`}27P`2$C5k^a!14JK1$hF(g28Wg8e5Fw zYal__zD1qk1&jo`#)!VYEvmi`@4m-w1eLxV$iH`BX?%o;fz0*qrf*tn?%Z0vxKEYLd%EuIhcTUdtwlb_Wbn`cxG1wp} z2r)j=!+@9VT`@Vr%>j@j?vwCrKn`_tCu9^MiPdl71quRO-}WDUevpKJwt>j+)V^Hk z57g+FXruU%PnoatUXZ|UVRvqL7iQi_$K&|D+H|6Smfaogqa|fpZL-@gj_(Zp8+>)Q zEGpdAtfCrw$IdjtdLdJI(iav@(Fh*??{fLffB_fPY3t_8jyBbaf_>}mv_isjEY{W3 z^5cThqBGv4{rgVmD_(fFn4QR1(QMNB(Jj6KSN^|+YRQqVx^`cyf6JR`+wQRuP*--Z zKRjZTTEwL$5M=V~R_H0vp@OoJ&T(!Vxdx`!U)h~zU%-RC!Kmc>g<}j8^VhS4E|zPq z0qN4h03T=!wp1Jnf-{`kaq{Z?5BsX0BN}}RMTfm!*OU{aVfcJ?9#fkkd|hBT9EP9N zmZBcD$KxWr-{$sk#5u8L@uqB*Z8d>QxU(gq>Wjt%;z1P{zOY3bb{+`^R{UI7u8#ha zUDTXv&mb8CY;J#%?Jpj>UjMbRaxabf0k>y*_lJf<^AZ*TzanMp5o(LEzS$_K?#B-) zZV`TaoE%0dr68dv;L?z+7FkT*>$n<*lo*^uesFMndy^35ue&_h|3m$oKiK(2)d;Hg zIQI9_hE2?XM1MHV2-%4AFLIl~HUSZqG7l{6x@oWR+?3*(Z}u}ooSecwS%p7k4UqHf zSsRrj**G08%;u!$`BjqNDJ3OW>T_=MXjmd%5r3bm2|A~6KwF&Vxd+BSIulHN^=IoX z0ra&Yg0Ru$ee3Z)3eJnJiHP~2`hd2c>n^x)2T^?Je!J})`q;JOyrgnmyzqyC?X`Ut2M_`{;L&emHPJ8}r`Gw^5FEHS&-&m1-CfY#%y3rhF z7#MH&GyOtJffZK6Sc|niT`^y~9g!0|e^X^@5gS|oNbpfl^z7>=$L|4dzRrOQ=*lK) z)H5pxDHzG}LJ>4goIZPq@^9@_ndO>hm|lp8BAy}gP=h0+Ii0g%>ea1V-a{=mJI?35or*&Th)p%#n2 z1D5{Czu>j>#s#&^Jg`_(XI`Yqz1!$(%&|D02wL^brr5RHyd5q@gdxBBwvtQrBV8Xm z_|Vaq!A9}i`%b5IQgl#H)%ydJnex9T zsfaHTx*_iL{^0X82dQBy)*_*Z@;#bU9na;0OQzK?`e{*@O45i86!uN=o2^w_KdlUa ztow~65~$t2W69-*mTWf?QRr1Hj|L=WD}sy8hjGq~X`r{Nh`z>ItIcdr$20!x;xDBi zQ8N{j6-VUiUJWn&!e~)7c>c4N=At;iB6s2BPl$o(k0hs;M7-( z*B9hZRUEQJSUR{my#PXQ@kpb-4Ei3OZEg_Uh-UeQoa-Hh zM0F$Uo}-tHZivfE&PU0S?~-3`Eb-(ch&WatrLK(`x3yOSMZ^-c-PEv7cur-^*rm-s zNi0%Y=4yiSzqDS>0R$(x988P8TALd>*uK;|)QbdKe&IVk6O+i-?v+1Wi!YwT%Rl*k zt^+oPbt}hnbVnycNWTrlxsRl@q-rNvY3lWCs10zB*0;MAEV+;(LmNc#t9hF-?aHf+ z)v@tBrYuw}!WnvZ^gu%&UT6ejAi!vcSGHoJab+Z;Kq9ZynUL?dE=|}9UV343H8a#8 zc|-SITC&!ARnr>9#tt1f$BRDhm=)|so&ahF3?&wG4!IkCo21QdvKbF*v0>=f)}QV< zP4b_WB~VW*y;qin@-;d5hY82kB?S&D3BD`2Z!(Lu_4#X>$so zrl;M8wl{+*&~0{{Zs}mN_g{ntJj+Gv_`;_6M0qOry4Pio7!Z9ql4@Qn=o+0)gn&yS zSg;qUPQ9r-FGx|%O*v;o)Ax1YVpE!E{w+0-*9ouQ4PwE zCwKN}I4pK?kIpJp(w`&G2SfuG56%k2h~&wFuXbtqJ~tnCyC0p6{jQ%f+WQ%F;~qDQ z{+8Lm+-QehHuzw>F(b?R;~H(pXC&zFt+aAe!&WloEf z{MCCAILQSg*IO5$ayE3ZEZ0LYdRYxwY8LHRP-3eG_Lmg0d6~np%r=oS@*b1$vwjDH zY1G_IfD~qu$Nda!o1>QWh$!bi}ggCM;O?udyGJ(7c?7+W+xIv|c z_aq$6L)|H&E#a-7oU2v{S&t=YXW=v((`XIn%|_3#8}Od<)7H35OSoAgc@ ziAQJ7_wK!l3l3k;(||C!BUWd4{uND$o?oAQp?P)1+=6z=BxBg-T$~Y3Nn4XYtbj|0 zW(*u0f|CCacTGM@Ve@?CxRdr*>VgiNwmQ_ftKZj`nVnP&vo@pVtePAYdVK|`Txdd4 zc`sa$=Dyy&J~M1<$#0p9Mm0ODTl`!NsRF|NGnT zcSzQTfLoqr+d_ExvjrPz$$Cf$S^OHAKMZEJDq2L~Q~k*i_$e(_bTG31SCVFEoTAog zRAf8L_M#=u&L_#K%jfxK($zxuT!l#KzqdsOs!%&kzkD(%+w;lOR8NkjVC8;gKpX<_ zOdr3udOzx{2LN_Gqd2FD{GVy=mQ*!M<&)5d9}B{dFpdcIXW{g0}NdBK7?U9)o1#q2&0hqWgUhk*%9 z@7r!God$Bv!-8-&sY?a5_TRds{87W?k#?1&73HwBJ;0tDV~pmx-na?Ei+S>gi$UUY z2&ZR(uZ#S(I67O{ne_zH0E|d&Llp+ErD2-IK+2PtJE62Xr~*aHmmi28(&^x!&1&bC z(708xi_N~UO7ZqYfet{{-V~?lOfFZ0JWY8WogC3v_|5F3Sw-^ww$TVvaqM!;Dk>*J z7Uz1$2>grAvl*m2i~1~FwmiICtXGW}8%hTk@jdUQLU$V(HdzR{c`&fP9F)MSlTF=y2{gxOf8>QZrahQ{TzE(z1ChI3ZaICVL93Wi4 zI6!E^U5PnWKXpY)g_^3hPMc}KynO&*pMH=JtUJKJ}>2*4mTRM?)vqu;qQR40`qtK8S{TQ;d!EU@)6 zu(u#L^H#aov!0g5H20w9e9fE)FD+E<1fv#|{Q7b6W6c_R-|#6K-`@__tP}@-1K!0J zgkNJQQ-|f;)9@LG5HhxK@~k9-R!MtMDITs2;X_0}6-<+>sGA!W15@*ZI)5$x3%VdR z_zdWmO%Swd%pW!CPsEkZV_f&m4aj=qVOocI6IJ9pt+LBnUn1`G5VmQJ(aE>JpDlCi z3Pbuxx@SqT-X{7L+X?1T>nM7Z3p}~$7yUKm_?TXE?CJJbe%u_g$i(r_`h7UDaBDx}%z2)5)N}x{6HyJ6|Y2W9O z-A|le_pqjSzNd}~+<%sganbXViY`wFQOutF*Jy)B5;_ce3`IHHX$p*n0~DGYjy<={ z1wYIlqdz$^)v=Txhh?0vtOjo2f8LC0sI4EqpoHHxbfw3>@x9|%c;wj*d@}M4+ZIFN z=|wS+!K38sKuP~0zx$vnvv7fPQ|nLxNO|TPeO!0>HU}ye~^XFkG<6 zWxjX&aZQce{?!0R#Ln@w6s~R|VlVG+e8cpiB~tR2oa@=ZuTHVX)? z)}+8~1yY+_*GrDRbzfOe^cfc~cs3U-%$(kzv`E)CbGPT80cAU#aG2TBl_!V2b!N(o zj8HVP3-z4|gE*hK;{KU6&v=E&&Sa~kEpnzhKXu$GIx5Aw{MI4_?mR)5iEfmJizqBw zH94Z0xfky&`(>WJGT0!$X)IpNqV_LzRZNoR?r(n1Z8Ry$ zKFxef3Z(WQE28m3#JpsDOT0%TBsgCR+N^s+pN+cYGRV?yh`@?0omFnVZ_5zp6U0@- z%R=k%`z@wb`+6m8S@Z8WP8Mo`d*gLL{8=r5HMFM@h&sZ@I!5Z`)heCz+sndmFv;8~ zw{ID6F)csQ51Oo|V|$a{aU5X{xj-L)M{)9&n5|psu4!QlFNsW^DN{ekI}NXY4Mq;! z5w-~*jXG=oy3WcrK!K1=qwXhzrhY?!{s-mmL_mG5xQ#_lc@8C2AjvA%Zk?kbNFc*J zZP%{>^meqZ74~*DWc?B;EtVKbl^VLb*;$09)_w@tuk@ad;5&KTmg}~dT0qBdNWJm@ zi#X=s_NF9n(PPF; zeh#OGy&`Yfo6J>6FFam4qdh4B#u(jFvAl8)sPd}i;(YQC%#)Z<`&0AQ`-(Lde+EQb z-4wZm)~h!q6^~fWm?Dvt$c-2N(rO%_v5&Oqoka;9ngsDn$`$}S!*Co6eIJ$WQi`+{ z0e$tDfvlskj}iD;vE6QS^r6|{HVJlo&$oZ`wf)f5Acr67T;LYwVIhlMrPK!e*oYnm z-o94%XqzA;TtY~#J1`Nf_IRg`7uxrOM_0J0gBO}djOUhKz{bnZ88SYOCK}=(Vln;R z<)QdFQ`raQn&jRMIiTBF(S* zKUdR&>**xz;C=Dr)mIrcz2&${&lmd(hBuO<0-rxv@{B(i1O(8JKkdTwU#RYZLx&`Z zT&7{GKO$J^rWf3ES}WF#$gMhQhln8~`g&n*DFkESa;SGZr6dh0Ds3~Z+( zgPO+QFEKbMm!V2tom0Y?IJqsTM&ea7F!g7gj|@rl-XqeW02PTveVLHS&^skLNcaX$ z0R6rV3jz-Xc4zeT5=xOjCvFiiAou7tQZjBR!)4u~U8ft$P!ry5@tRd+Z)`1gDrM*| zqNdT3Tom>-@49H3@LqgJ+?b?3s4?{b`r3ZZGd(PoMg>NnyD!=!Lpw>2Da`{Z%aCueh@Zf(kxmp!|CUFZ>@s;&6@#TI(HF z=PmyC?T8`~>u19tFFHY@GvRyhwc1is46nh?<)oI9hRTKIt~wJPyHo>ln&c6ww&$OA zL~cB}H`|%Y^M3}tkv?a}O~W>2I#?~%gJyJUQhw+Nvxcnfj#Yv9Gl_K2N-dhj*WGir zr=mXCMSQUFFAWO<(wjnn54p97s{Xnu+cK+uAoixqN~E$<;AF2L1U!!3o$**De}(s5 zUORfnJuU;An!AeD$P}mV`I=oySDzY8-DaN)1L1PEl~*`tHD}Hb?jCxE&uCLrZyRA7g5n!@XpxA}IlYWaUt}Yk6$GEn7%X zT&>(gq6CWj&9MCi0-OJsHp$kU?UoMOb}Gio5j*vse=gD%j{adXmN&&Dfw7t(LD~GTPO?vdRIcb!5MZ z)+ZqKv9ha&cljEqEab*EWZQH)F=PILVXfvle-!&8G_fg=>fea5o4idF`dM0U2i?@L zuou6z+jq3vP~+aNt(zXS^>VS63pJDrZHnoq2wGIr3;|)xN_FfXM-JCSamiRlUxhC@ z1fN7H5OQOYzy7>@nI>*nXx4Z{BB`N0|I9euUX7;~H7 zK032IwW0c^p+={-^A@W-<&)@rnM`W>(}_tDI8wHc*_VbYDTrzcud>;6L@=FphgjJm z+X@Sbu!@jaKe#O1`PY?Icp3H96hEP@i;UT))AnPD6Wbh+<_ZoZbHbqBlvl#SV z(y%_KPE(0_@IT0Zq-x3{aW}Uc&+DLY@yDW2|H(lDvzPiA{~Yd=d!Qma{O?`z>9@6zej2H&D)B?n z1Z^0>YwHIowgB)uFBkD7|VnzgCMi@J#Uf`v#buIs)qZR^A>S; zcvPJL_57KL@~B~R$>kd% zcXk2&+kDX*5CR|fAbp@Xk@+Ns^)a)hBr6-l*b}KUM5-DDhe(n&G~08STQ#!+o6G83 zKp{c%hN=LI+bpYB!N73jA_5(subH>sPcwG|sH~%Y;ORkXl{j@Uzzf(ri4tY=(!ik@ zymG9na}3PqGUeeW5Sc6ZU1*dAxpCyZZ`9nS*~<_7t}m&M98KghpgnGdMC&=uduY8h zlL0M|{b~@WS$)6peBIl4DqslH)qp(#L(?w~nGzOjBu8{@gr1cSeoI+ON%&vsKlm6jp!%Qf4)i#37HuQKN26W zPI-r)=Ag^Qa1|9|c_p?e{SoBOJMuaKO2aU8D>%6{)alKZcBrDw*Th4GHn-D@eB=1& zC`Ofy6f=&$GNCnAo}s=yvtj0=B4T9@y#>>I_BC_TbZ$70QXaUo4+boCYvJXD;0c~> z^*gU03(q@GiS_?_kn?Tgfvd3B)fbBt`E^P1P%Yq3VgF33yXs(y^;^7`XhhTj*!}kH zB$=i`f&QAW9P3iJ?0K>PQx+blF*b9X0j*S_%I$d8p;g51V5+Akd=fL_#%ocMM zppa*gRIPpc7FDRkw+YTu!PO@_Xko}@cKjm1%9`$x^I zM%%HM`t??V@GeANRT%bf^#Ku_4L@M5KN9f#ktd;Mc4d`FRsw@3d%pJE(S?IxY#2L!0@(}l?>0)DqT(Dcne&6vRZl?U z>XYR&%UvKihj87QgoP4qFK^*%R9bDQw*``pgche zXPSI%L9}0r*1FVGgJmX!;WxAR#J`QJGmt{cE-8ODC3DssBxW>)G^NyRe`0Tz7nc<;! z@^s%UtECy#Q^6nLa`l0k&%#41>hH7}=1NaOUV@HSZ@Q!4DdcM$N%^NND}M#IJz&KO zT^wHCU%jJK9n@SVa=b@V`Kc^aFeqAF>d~MjeZY)Sn~w9`F5%&C`uO)Q91g^X4D2f}Xgu zGKRlw3AMz)?lE3PL>I-EbfNP5sZ?d!C>;*@st0Bd4nd39~fcSkN|J3Zjl-OO;5;~2neA1PWZmxT$y^E`q{)0O)vPU5+Ewo{AVoIaq zHoFu6B1?qo#8RD0XO&Zi?fTa^>#qI@)^<0+T&cUc6ro1hN;65SlFWS0dqwrc-lXVz z_UK>&@%5aPUXtAi+ITb1n3$Q+>f#-e4RQFjCsEK{1PfB!kcp|sYlY7;oxkD^nmSY&2QrsqQde)%@wx zng+5tsI5UQqRAE2rOrsz#kIM!8}j8@Fw#h3nt>|xI7EG=v7bM+*-~3 zS?Hk%E4)_eo@=wNolUUV-ay<#`Wq$V7SU&?UUPFU|>SK29 za~^c6>@UxfT0F3v*(^()Bgo!5OinZhC8mRp;2+p_aFd{NUG* zixt)YXh4*AU){`B2y8+QB8CS(Z_nR2pw5=l+_H^Pc(0#KDx-WZB5@HogkVO25EV}`-wIGE+Abj8BpZF`$IRJ8%^WFk@v)l7%Gp{%+wb}Ou zwJCK8z}JRjaVfi~w%nh65Ykw7TU<0N=qru$)%kJTXuf*MD~R#=ZjZ@cJ!fr$(rB*K zqT(I5^<$9?Rv;;&?Z^%=6E(9UjpC~U{SH~iHg0FX@*Fbud3@h^Fdkjl3coHXb~HS|Ocr$-Ec44@6r)X4f$I@yb-hy;@Bnui%TvS& za!<*bMiHk#jo4pA#&tWle&)AS&~5Ls0c{e%*y|xn_l0SHY++Wo$9QQ7@-YLuO-uDL zc+(*f{W<*?vX)Qj?-8`P2O(X8*d<9g4|Mmxzt8_FpACCecOTvnC6i5EA7OHB=RRQv zaO;!;01SWp(^W#if-4@}g4;OoBU-MP!?)Syj#!RYb2@BUs~+OsBop5FEKyUipm-Kdd|O zf7~YG{|h(S|F_s=X8ylolaup5rzuR10nWk0_CGHmK&(5YYO>#sAO(x|Z&S1d+hXD0 zI?~eCF^Cej%vnl7q{PG#Da14k5u^+=5Mt6I(#j&gXnuJqT_1PmzrTLZdF{C5HlIJw z>~IO>pT|7^POOZGLjQ|e7b)=?AtW~7EW`nhZbghu&j<$<4eIGNlOS+)Bd85h&x3yu zD^~pP3mB>k3l#NZbURbbm*E0uhpRY0M+%7mCsB4rvEpIIriOx=`kF$GO$4tJ{Y;P- z0#_jfhaoY2lky9WUxIlHl~6EargX;73%F74HU7=Mu80q0VVP9^AJ~vV=n`_0eycV zaYgud`|!{qZ@^}B6Sje+GRu&7!5`qz`m~#g%-oajto>Mr5Mv-r*HBq!C*TfVgGxZo z<2N@9_%|*h3Mt&H$M3!(fI_6mA6nFixh0(H2S$V#4>+on2lq`{S#O0xKs+-_l=Ism z0OR&7VK6HCSs>+6aZoyRJy<9thhake(A3xW`##JlAx~htXj|&pfFQ`fv=hGxYVsH2 z^Nz1Ln1~w?+`+Jn{*Glu;)joEY_H3Jc^M z@i7?OkGb~-vh66(Qm-))d1vc=h5=*ch`5@-8bvEpn3)L0{;!uJB7ZVA7i6KK(8stS)U%mE^uNE z;vw?p{n4&A2JJloijmU%-WLu;JgkU8_2filt(rbb{a)14E(>r|Nfc}xh{@tw%4k^m}X`G%>@&hGmKnNT(ovt^9JWz9-0x@?N zv=0>lBC=>+Af2Rt>PaL3h8^n0CckMx2<0LDtQ`V08eDi5h(=){9=`_!#eNZwzqh}{ z;~Ms2Pg8&cCjXlHfr-9Tq;Tkdqkst~_KPF_)z#;1Lbb|<*JyfV>X;iwof7y6Ln@Y; zUMf{`8Zf42(j(?@TACgLb~YK@59mpioa42}FfMXr+~nA7`QW*WWZAIvY!GzOm}{u~ z`fAk!?(sG8=@gBixgH>B=K41(=WhGi-I4d}q$1AYBEhSN6{PCHWSO8?EE8URcgg~p zAl*AP8o)byWPeNTkay6`V$Ntxgo>m*P|XXvR16(Xrr`p`#O;pryvuySj!a$S5fZck_5Cx#-TMacY!x0#eC#NBc zQBHI#pOJL`2Ptk$ic`CLktu30^mtO=d=GUy_-YoCg`CYE5quLC(IuKg3680|wBNI; zA1^vv{{G2E2otZ&aMZgxuYrSu_Eq5aU`8(g;KnHDZhg{HrmL3>q~?jG;iyE|4%tT` zj<>N5@){5SSO;`h6H707Kzba1{S=4O9l*&{X=E< zaki3LQe6c`-+J#_O?Z_@A+P+Fl+9#g`8roOs7VSk(_LkcHNL-YtU6FbUss%A55$bK zsTLS2w+GyOY>%Twb%3lM~mVWeey2r z*)dXjdVw?f2PO1<*wK=3t19}HvIrpq*r?Wvq=2~BqS4S!qal;md>*F+*tYm+uQYgj zngv<1pP7hJ-L@7sBxFVbu)U{d%`xzS3yM&L1lxh|^{-{(Ez_Y|Nbuz9=#D-=vy*G6V~A z^AKPwo157?CIIt&6V0L*^mXujftn)hjShuRSkL_qZ-8NbnIo3~yY5#@^sG|p4=-f% z@VNxHOMh>&v({3x2&+hPveoRFe4kTtY%0rQC|z4z539c6u8V`5Lr;(hi?`imF~LVpx+CPz6@z7=4& zTH@+d5^FN6;d%yjh)}JA;p2cSAx)1%%51E@y)j$doXk4GesQObkqgw4?!Yj8(fM$15p~aM!2Z!<3 z{9ec@%~!&@PNA$tN_AHRM2n6Pa|~E)`l|pgN^`oQy2O*evfiqZBSFSOC*>Ai_4)gmhneV`T9OaE&fhW%P8Yy+fVk01k@YnjPf{kcG-pIUP(&A>ZV%>9X zKg~}ne4N@IyC-Ho$ZUr+V^>2mtYmi*L6L%2(j z=Buk;UOqp=pKR8Eic_&D60f9BjKqV;f#5D*4amO4l{?fljJ=Yy)L#1fVr?~Nyaugx zHJqG5Ih+Jb+p~5UjgBT5HiIZn{a~sd4hW8!Cl;IyBTFM4IF@lx7mOMI8$0F zE_jC~nJ1fMmea0R@A`E!&P!&D8&c1&T2F-jG0g9fzvVqOZ2Y!1OyHYJbJSRJTX#4s zg>n`v*jC$v*JSaHJ$Ui`xiwipHNFgEzFR71_+L?!{&sRF({4^2t$ePx+^OC$r`@J%> z^f<25?8!aKGEw1PX6BiJB%|?fKUDSnW)RnOL}k`dA&Y)k-gq(bZ1B4_)ct5-F&wOf z-^N++m8ZeeqZKg2*Hydib;d}b+#t3wWFDJ8VK=kaNeSrDW+vnDf+D3@9FNY|Jg!Sk zPH1lvLj4{^%P^hgaoMm(*YsRAwbNNmCuiUY6|}n+jg9$Ng({%4f%I=OjzkZ*oMc$) zS=%y6W{H!#0?;rsnzYl5d6#7U&MP9^{u+RPttBsgxB}Pg*e|RvvSTZMPe-gVJIbK8 zn)XfWriyiOx<7BUU4E$GckZ^Mt)xv0eG`nj;A+G5;GYegcfFdZ?oPJ4-I9qg2^O&{ z%}Dzo$)qmv%_IzkCt+3vxr-GVBNu09%$V`FEshQ;gdOG3u+A;P5dt zU)LoS3ERNQl6dYHF}drfL{o3F8!+ChnKGhJ3Dlna7IP9QIZ;n0aOgAKLy_b#$$vAw zX=_z}JmNp~fyGQ9_<(~GmUiPgy( zxfl73z73I%v|}d!748<&y{_@6Lc8!605=1V3}XFDg84mW3r^u9LuLtw>7lx#@@zQz z{L`xIbGw<B!(Coq+tM2L{dsXx?||y zpOyycp`=5)Vd$=*JEf$DE(h>>?|N^o`{AwizMXy6S?he;AND?HAF#HUs0dx~m1GIh zYonZa+Qn1sWo^=Fp8G3yWabxDlaL77qTJQAG6~cil?vM$SRMEtq-iLvCZEcR3`A-w z{*WBiz#B!%pOS`)@TI`M0QEYKD2KW6w8I;ec-@j^rSD6wKKhRnzm0dWL2uxGO{1ED zRm#;Rplz+Ip7E=rYiH;#0Z+I!4I%A*)-iP(kIOHQUUEt>m>Rj>dL1Wa?AU2kvbT#e z;w8KCX1|Zs>n7vDXqdF*Qm*Lm`aYlPnXd4yDv)+8M~dU;7fWX_&}yBd(VERRE2u)J z>}8`mm;oQQNy_rlxnC+P!o_W~#|2gNpiqx6L-=I?3$aTJ!O zBjF24mgm)u482MQZXvzw}T%byiWEWL7_SjM-TH8v{mr1(gOP1jc9P*(3Z zcS<`Wj_k;l`{MuEel6=Hpl#W>G8Il@nxxspbo*|<+QnxzBFz2Qf4Oa_iQbUa-Z-#2j&S~#fhO??URNcY>D=;Rqy8c_kiT2bzLIRH~mWD3yk*eI~w6HJDit)Vs^|3 z2NmtIQ}@PXQq$5##s)vhmA=X%M=F8F_qeAma+`ciCN&p9w*KR$?XD10OF3<1x))Z5ue-SvMxfrAzm#*HjWwgp<~l8%7t3hm zC9)9-hcfUf@0_g`FaES!s;t)qMa2beqk1|<*-EFuRkTxES<$J?<5Vo=aEVZ}IdNP+ zt>wN_d4?|q_I-UT({#-Rf`)e)$1TCKsK0t;ZAX|%;KW%ch(l-R$lnf7mi~vzGLc&5 z_s`M^T3xe&&D~U*hl!fE5A~amQxHPMn))ujJB{!PZ=AL8y@}yW#`TT1mH_U)Ycl#T z@;-cOt(oj&_y4T2_kvmw)dmDT96NH=dAUBD*3q*d@`ao%a1pJzeWNqpO6j%Zoi*S* zE%Q%DkD#9VZ@t}lw=^VVlrj0)UC8}|zy~6UbqgE;7V6ZB%UWr|xU5AR^j#LHhV6nh z_iM25)vElyj8z#%x$p9ycdl%sv~woapl?HD^mtaZCGh*m*kg*=6Ha%Ib=7n`yE*3Q zG}Wc~rkbXy4PN{dsu$-rV&MqtFg0Ms*!0Qvkd9*XLrM^`{F>heA;OafWNAIRS`TY>?@6k!R&o8-S3shpNKJcY#9wh#|*u8?C- zZIqikUGxM>2&v*53h`Uo>mDF?<1Xfl?0;bUs#^rLd|cA`W+I+wk1<_pSxe)?f>Wsp zh_G@iutQ3T>sd(50L?+gFTlVll*UT5h;?2eKFEy!wcZ~kFRqh~xJV1Ri40uL2crWt z_U&*J9JS1LjZ8jx%Ip*3xsPC(RDbp()=;B6`27cYPqCOP`qibueHeoXja(}?*AyQ7 z8_Y-I-4m8ILL#_N<-jY~%gb#bJ>q+(MeYNF zq<}t(rzo3U>P%Y9Zz2CEgEO@lB>9jw(vjVG6>6Gy$Jmcr_cr+8keywEz2pA4lG%w; zs|YI%CES>dfqLz!hacsYCyRT#p;v3xt>lt8p6`EnRmrKF4e>M5-pgeb{Y}=lX>sbw zjbURFf{Dp86{%wG1%z+?q{(7Jvp}Uo^?UQ2zc~z=5<#l7xPzIoUvTNuLRL@@ag}}< z-qDjcru=n!AFb=(a(-uY#YSEQ(mhXCqeKkk;%3Xb;o=T_5ma!99+Wf!E%eGnk=xK! z@a}>ANoyIpdq%o`Dnc#rbjQd^Qsu~sLGUF^iIGvPHOonPK)WveY_5nQ#HG4qx18?; z8at>?5}ec+6FIdIacL)6Rpi8F>)Fe{f zU+B1QFc!b%UT-3Zei={^iBOTv=C??kNVv1rf7qA+AV&PQuWOPuz4Z9Infd4?=i8Q5 ziQisD=!K_~2i6jZGmS~MXKhZumS^TDTi7kA$AI?-s_sHX&C7YaYidP}debWvyyP_t zAVDtNKX2tzs*rU^b6R(ja%|2efphY^$t3hNDS({c8>*?p6H)^=zp07HB!37v7>v$m|vZnltzQzKFn1dp$$8149; zBdJIG>uiOT#93{ILLRf-1QpO=*_-hs2(C8*@wePYEiOa?Bxnw>h+%zdP@$0b)nvJ7 zq>uEnQ<`?-$JD}+j$-#f#Smac>^6JCn@}firZ+lWXQ*;L%78~N=YcxxB2X?<{7qO> zqLEv_*pc1_&Z`f`SP{=cJ}K?J_bk>trs|bixkGE=b`QIX9gbL2GwK7?ay$VTJ#W%n-m61Bt+FSn{2-A2({``1Th7?0mfL~ zd^6(y)?x_e|H|_7ekKfMzLqVijwpY&O=NHMhtV^PMUiHmlOcf7Jo732HF12U+SmI} zQ74w>K_;jc{*Re#p@9@s<*&{-Tm}h=Za4Ujuzm;?yqEdLGOC$(4)Nt7j`!{O5O7Nv zN&;WjbQvxSn}6J*c-CN{Vo&AO-3?%ggpOBSh=vwM+^o=*bg3K8cm|Pc4bpST2RLaj z?^NQeKl|OAFUK(6lpMnWURgJwr{_4e%>?!?;#S{S;g!(@xmF-YaJ^pPINYrw8f)-x~K zc*G8Sm1(b=wlE`j{vxgKWQ2C}l1EA(NRm)&R7sCUTb6twA#P@}n>$O&9x6T43GlV%nJ zvkt4RmYk}^-mq^3ZJEwEESlx}(1uk8X&s-(QsUQAp{PRP=p)#J=6TuJq?PriOaDfu zI`-a^A4ZI8o8uMreiHO|*R38mxeFU(&9^7H8U2C9c@!3T1dpOdfK+b>p%7fNyCR#% z)M^#aw~tC}xWx7xAZW(qe6FG&++A1KTNZk9p6O~AB@7H(KK<1$ni#@9LN(Jg)0YK5 zB2aK`Y^Cjp(08ILFk?AJ4gI}gHYVhQ`40M&o){ws6Bj8zcH=lkv}A5@`}^cY>Vk{f zKH(S_LHJmd_RxAY5Q2#O)pg|Cu#J!>t=OOSu=BBjq6q^(VFQM7c;f|=Q7EUhV$Q>0 z*ReJ<14dJU@Gg`=`DW8_b5dMYA;Lp5@EP)#13|JaE2rud8SDRb4Za@g{Z6qnE~SHgo)K4H0@m;_Jie zxc$J`wJF1=90rjWly9XXo|2>_9N6u!Ejs$tT{h40w`_Jh;S4%U+etKy-ggBBE@NuM zbIcrihHK6Pqlboa(il!Q4xOi1L{IiCdZk!4;FIIBU7uyfa>^6-Kw*e@+qkj!IH~T{1~v^r-66 z#k$!^$#5Bwq(9sCt;}x2r%x9iyR=8g0v6d=ur*Bp${)VU>1Uf?`XsK;UZaJMMi;3F zn;OA;t)P9;h|62b-D(=)Jzu}lA*S*Et@m2q^rmj7A;#c%&@dKa#WuIX*nD2~_rBZC zg#x>^f5q!hHeSTm>Q|_7R8ZnA018-Rk7dqVbcU=)b(}<0V*9>)YWm!J$LeN+v}n}c zrLPURsCQs8P0rp)+k~2X_ZG4}V@d^OSk)Nx5EX{2rMxHv%`HjFM_mUhur8_ngPOcI z!Su99tt@?F?k`z|9VSCus_keGMvNWCat~Oc@rgPWE*uLsWD{iB6G<2TJbF7<=K6mm z`anRupnpgEh>ORE;Stpsn17{>hky0Lhwy^If?xqbp?LZ*n*Ty?!YZi+2zV5%oLyW& zV2H^7`pFQr{iz5z|PSWzJ+~Qmk%d4HPw|0+N#Eb?a*%(^4Ju zm8ZeULkZ`b$|BI#CN_@e0Ux~MEpj*ff6-y&o2N8R=i`~?S70_48^e-~T=e z#{m;*91&UiwgY+wQpB6I72Y73@E7y2_|@hu}oMvc{>^A0OE9%3mfCRC!nyf6XFyr+&y!F^$0p*K ze!QJ#R=`VmiQOMoP^Z8S+X+W_#_STzL(Pw0p0e11C7R`nD9a)z&^AJ5ic91tE)Bj_ zcuonwbN3cupAX~{lhxkW9o^}><01!lt%YeG_#`FnLBf@5XYzI*~ zgV1XU{e>55Vn67TBo3<*cuYK<`6QZX#F9>@m`~RolnL1XP<=aHi+`=#+ON6vg|9mCh4IRs$RhY`WeEq-^Mjlo$CumE zySu!u&BHX;Ns0dAMq^b5`J!ddN&`y2VXya|E#(y!(zsr9!3O`?bUNj@X zZ$QBF!OF`V#LrK_qYcsrgZMz;zda2H2Uie3?_c`SAmCB9|Kb4R2mcR{1L=#4fJFqr z3PLi%G78cHLNX8q5k3)!w2&~LAVf}3T24k1^#70i-J**BpL{ZqhyW;FErvsX2tgL` zh*ECCfb{X>xR}L9M=4X7!N$hKAqk&9j&}HVrXo6_ixlS6qXUfX?Kype)~2jV;P2hU z5(<=TPSV?-!+<097>J+U#E)d7+Fp7R@z&9^oeIp^IDDq~Q*b6+(5@ZZnb@}NOl;e>olKG^wmq>Ywr$(V6WccT`|ZEJs{dg3QQs$Pb$4~G zT3uH!WrKy}gC&rIaWf}Zz)&YDzyto$OFevnATXs2fqVUn@i1iq!@(iLrl=?A>&+Xq zSS=#b^kiP=?vv`^Z+%}XC(WulCv5fA+q}Q--+H^a12Xu-Zl!IcC)vT-dwcu6dIwH- znsfL%aXzP|@1%joJK7Ph9&lyQW8Xe>@P}a9(@xhOC{7N3gnseo)O^(0RROl230(~Q zwU|DfwQ*eQOGeQ=nh>@R1X;23?8n>TtV9}7i)Ce2+7mED0ESKke$Sw*-m6#^g>|E| zlLS1ST`>VZt%5^{5!=9HRV=C)YMPjOBjdfYnZLZ!s*6X}@%2j&bs_s_@tlRTWNhKJ z(|a~WwRq2VQc#*<65ibY0022R_p3G5#(@?Gn`gFbR;KKeN!LPu*XkVj!~Ifpv64Mv zjaz*==j$n1^4OX^)>J)e@VHT&gWGA9c$E|b`k9l(Yj{8+m;oeSN~JyM5Y|EJuY=RQ zzXzsZ6i69#9MSSEJTJK!Vk4ETgvoBC%v4Og&{g77Qq`#KXfsp&EC3Vo0`rR`S%hX2 zKlvKN7)_0}bQPCFkiWv^wrf;=DxCAr9Mq(VceJsi#W^rjlVZHte?v@% zq=H`NM>ItDv$m+Rg3W%%o@|BI2Tu->z=fin)>|$I?M%?GC73b}kOvgmQW~X1cp6cx)l>1xE`U~8AZZtBrxhn&}kmf+U}NXN?3wy>vS zP|mZ$dsJmt=qNz~^(qV+3IqOPKyf2k{1-xJRUNIl)WlzVEWl=3swtF&hL5PWTC^FY zq$8tXDV>oDxD$^CPiu(SN>f~{gnQaekWA%xI6g&$3 zAYg;bR3EpIXnk`jxg@

$Os`9_YgoSVHz>5(dfq36XG~4*diIpRtR4gcm=u4(`L- z*stSD8_$&na)7y1L+k=WqW$O<%V#1QzK7r|F-?EqFPHNpxQwN?;!<37<$iJAl>ab;ipskaok^&u_VIEG^2H z737!Juym^0#&j_>(lWnxPcvb$%~`dl#@Bl&0YGvZHWm96JJ^_t2EW_*ij;p*SMElj zy84q>l-zU!puc-mG4kh78=B#JnoFni8w!l)%;1tFf`8L$gvOj}-${>6rgU1P^Ti2| z#U;*&>6;%ZHygomP66OICoDZ^pV$`5&2V}|*5|2)ONq}=a1Iv?*4jQTYiadma@L#? z00SN|?xh#BO!2lSJi70Of{YJ?hC2j&!4a^}<@n*;@UBv}wShhYyTORmI78sEmZrg3 zBog(%l?^)|21G!%yxBSJe&ZjXj#()dhy7mouP<|TtLJ)ng#Mi_(HbK~XPdE;r&|g5 z&{DHXr!?)766lgRKr>0>b~=tRz#)Pz0qEv4Oihto?~5CUe1_~)>E&n(v!)li+4Ub$ zFCI`%WdF11?`=r0&bY4h_UOV2(yy&$w!WVF7SmYudvbao*WaN_GPVs`jR^$=p-x%MN6w(h~`8besghtIYG;I%mJIkIB(1W5%Sg3bGNwJUaCg8$BZT zE?Bf@Yd=br`in!^DeBvQ@W5Gg05`7zmg%OoH=dfmpNM*BR+m9Abfo3Q>{7%xTT44$ zL^juN2Iwtwd%;!P+p;^eFK=AQ6Yz_-{1~RLaM~TvaC4oTciCIw2Rpwc*y!W?)8V@Q z_o!ix8|BLuiW+Y+FTs%?Z$Dmo#l_Wr$nnXGI(N=@jgNcaec%rE>k;24;M0_0`p=9h zri-G}Q%BO%=E&6&UzFQ@Q2*LIIHxczzQ)cYhN0!D2qo9hcSDz9ZdxcOBgO!3zj$Bo z3ChwU1$}ais(TLb<#8r_`#XgupQwmaB-Zc!A(XYq^s2S1`@Jg0 z3Fz3jS~Cb4L{1Lx<(Hk}qfz=OHeE*}ee=qMjolj2bN=SY(!Vzr6cmkzU}k+Ck^k>e z7V3nang6c20m*LU_C}xhbkH5Z@$&=U<&QdGAylwo_FI1^QpAx2)Gs+LF3)fU7^Ipt z{;i6BIN162GmRC!Ut9Z07w>uT)H~8$k{IyUaagrm8b52T+icSh-ehnd9lc7JLoNKH zWIifiS_fOa9Z8$Q$5R00rMT+=?es_yh7HJ=alYq{iX!kTT40#eInM>cxW8XjMz@IeY z%(~6&J3kc~qH2}0hf_&2wsb}LUy_tQlD7^tEvqa=rm`7awVNtCGpmk0f-_sWXUyKe z;zQU@kbl10zk6PK6~E#42l8d%%pJ^J-CWF#?f=JfG_iqWWoxvD$-)!lAZ8~1AI;AX z$0TR&VCiPXLd?R>%=N#Dm6(&6gZ+OM8!_|$y2M<}tpD=`p#iu-sx9qoFw#VXNTnkX z>$ACWNqNd34T69VBCxPW5XXk(vy*OZNl`P0Q5h z81dif&a-S}J;S}70Fu}j&`Lo>VGTj2fKc05mq&sH2>%u&RtgA6T}BBD68#x~s2Wl7 zM8-xVx$6b{wFM|J`h}|sRy60VBLyM6g^mOQ3nom8Myw1=j6w_o5%oida>fX%1oo%@ z5=6%r#GM@M{C8hPgxiyQI1hK>9PrZ?b~nHYOn864kiT~k^qx`46B{B1#41oZP6_KV z4uu)tC?KRSpLz$7vYX%{R-i}m`qtgu{np1w=qu$3jRR014B$dIf|(2V5#H*~_Xscq z2XE?UoD)jEL#+ctATTBbIDr=nOyFH2LFR*UBY=r}<+JgldMJ5<__ziHW>N}|Vnn^7 zSG`dMK;ORDfe;JM^-g|Gf2+fUz2+c<2`4bt7=q51J!=|8j6ykrU6Fh9Lv0tm*IKejM@ikkjp5L46W6{U|{5QwOs z(5?Z6AOpfI%D-7aL6#6fo&vf5JJIp<0`BVy0`L_yj}GzPNvaR}d`glZ$oz-;J-%-T z{1Or}e^a0!@cRdNrx*-B?!lOhTbVuI{G@67S|Y%#S|S#&v(A1sv3JbA$fSm&S@UV#4jdB9Ai!3<$%#gTMcj zzTc$$;0*%Q-vEi9y?82jA%lQU9{-OYWUe(xsFyFi0Lp4AI0g^~avi9MA0&>zZ`5kc zC8XoC`yB(0U)T%~-XY+bQ(eR)g86eq0Q}P+rb5a4L z-fc`bOq5qc!KNPKnbVg+@aah*#yV&nyRx0t*U7NLqsLjn6jYSrEv7A4m}ro`>uV!J zu*c;h2IBxB7zQQ2vROw9@YgpKsb9R10l7RVM)7V`ukO>NU?BeChVj_%*mH400Bn># zP4598o_S(ASA`-q^A_l0lcS~b>Rpfb^U24=9~%PG?%Fw6rlJWhXbE6Q zc^3NAIQdWBbAZqguiyMx~bx${g?a7>NpA1@`0Z<_Ma9YBkinM}o zrF84ArGr~FImuwt%Tk{l>2 ze6aw+jY-gQx5&yfQAm+gDh2duYRGLx43@_z>4-fKuq#Kapf!2Q zu|5JDRfg-P9k2f~m3-;5-=y#Jm*$73Dff5C5XYi~W1HjEAN^_N+n{%rgK1(8kK5{& zSDAjlcFh;hdt`NBz@z$YE~`nvJY08EKMxqWbGHAV%=uX<;<$2OpSma``?k;mqDG@| zH8bOQ`_+{3>rn5rgA9joK=JG{x+Ua14H7WE2Jx!Q>;k;KtmqeGju0kt-2^|5CVo%| z;)BG*iH-Gi({c1xLmY+U9v0T>@brSCNf)?K-E8HaKuaS6NsqpNvsQuKlC0;lser=M z+Bci&3g>G3qT+p2p5h1Y2gb$Sc-NK=>jxechYYn@4o=Dh#E?u`? zui*%AQOP8K_g8-%Tc^wCrYFsBJp}TpDof~p`NBTO3z+f!Qi;}Aj$9be8KP~09-2H7 zS%1aZ`1-cN!bS-I)bkwediueOkkB?-rrN->Y;qieibaDUC5Xi23gR_%@vx88bS;ry zSq~QWsx*cZfv_>9pTd*BaPA@7e|TJN4synQCUlWFf4X1FD(IpMS;S9DO75$J7sA>J zJ>BBcSgqI9td4e_Dl)xQCqvYIGMz%6UUFk zwR*4!lxV%mLdZy(OnjBMuD*=68DzPD;0sI5?SCH8Q^p1sV(QmgD`@YzMx0lW( zLmkH2MbASXD~IrK+iNjj_VKGgxQZSpL?p41hs#$X7fzV5{vHa=>}}~nC6RP>Hf8y z5|_vVSPy?lEzh&=UDB#l0v%$iH-Ln1Zq0kjIn9bXMG6jsql@8E2gT+ZYfTw>({wK7 z-?uGJtico&-+ln3e=LHCevOtwyi7D&{DZx{c4zPJh0KrzLhsh+;%4!bP4kwW4~r7d z9R5}_`sflJ9-vn>eDKqZDO?~wssAj%u5||iHMCHUm6y>l_5Q~SE+|;)81O*2P-(a( zC_(Q0e}&hi6nz@SPDRCa?^eNgu&Zs`qnVy05SA>%%Y~jbyOf;Q{Fj40-D7=JCl>fg z@e>^Nl#{MNE%EAn<-8ozAso^x5MYzgEKQVJ3vMB^Vb3S;ljH><=TlEYizmK2uz?yN z6R~;{8YcllWS`z)19u^n36r-t%dC#AaJK9php@TF2YjmXbl)>DTQd`Gt1E;hu)JH7uc}^_2**gE~swD&o1Vm`Q(U z+h{FqEVJt2aH}+MR_!r8VvvJV^mYZ9WOM8(;HxH?4w#1rQ~x&iuh261SEAtp2hPA^ zWZC4{X{b7jB}*1zL%V=N^eQFWqyuEWGt>}>Q00=Mlb-XK((kDvJ#WmqQXG}x!C_WE zjNAtZW6qAX-NYH&SteL1Uwo8|m*Q&fbF^n4HNXItrU|ac z+X~yt8b)&@hYYJjBDQapO5#|<8;VIYa5n(I5O6xm-Khn4D^STWyIq9L@oft13x5?L zvCX90A}w{efy&sk*`0x~=i6S2*G2VZ2L9ZhV|}O?@^oEiZA3g4 zR+R-+TOoVAuK_F*!S2W`_WYxV-E4_SdrO`v?^M!3MNueCo^TSGuWK@|s#9LeWONB9 z1OXIRa&$2f+@R;s=XC{)>)@=(aG6r59M}BvB`cxxa=n@wq)Gb|e`or$3$Z8B-P&w| z&KT>_H8j+*en73k2LjbO06RXub=%%7$EviYn%G@5p?YWhbspdFmoKktlm8|GdW=iH z^|krgww6vk8D4cxI}yt;JEp8T#7Mw5r-udFPce2!zxQ#8vfT#2>mI{fiR^(+K&ss5 zv?+K)6-2RzIu#*ntz`0c&M%>` zxzQ>IaH6ZJx~_VFd^C?|wevq`6a@E<+8mcWfegJ0Rn~Q8TZa;=$m=t@ZRbUiCH1)! zxW&dgq!=Esb)abbF<6XW;AU5cCpMG6-L=(BbY<1f&7eU&*EjwPTd!!@%~t_RAA1>F zL1yFiAShQZIMd7={nMNsqGrmZ3$bJ&s`Ef~97|*FiG&6K{l*-oZ3nY#N3&kGkkIt1 zESk|2dpjY4@bx&q3ZpSf`M|p<{nQ3u?reh6hVhzHu_9dU!{2?~C_4tdmcj`3I#LL{ z>!8o5s!h+|1w+YHXtK8u?Z&_->?cTUXYJy?efbV`#{bBEDtRv;7i}A>hD{LJv-Y`e zQp%+9HpmRHe#dEo&--OTz1KV}jr#9Hm%n!PRN_J_6Mj+m5D!D0b|Gn6&mdHLYd!JL zh@=Mh0n2h`9hIo%teLbBTeZTw&wkPVR=DPJ?oxGD-Xrw^r7y+-kXD}Gf~FVEU9+}M zd>N_|XCbj7hF^K-DgcQf(Kp)spgL5L*iD%fYQKwOwA3?D8YJgZD zFlCUA5n=C2?iKss@ZgkW>W87m$uaxdX1nO9vLn6yvDAo0KN7S+SmiOfK1e{t2saLJ z!g>HqPX0TbMRa2oI#oJ!7#FBLjj{F;Z9SKr*hSt@KV!ffk-hexz_BkWMExXJ%DH(A z#vja2AR6DtFFP34r09p%nqlYf@B0#o^29;3*`;C0&SuR#ZKU;iKiRA4$a~tv`_*Z5 zWDU+XljZ;ykFyS!nH)j)9!IabWc(cZZq2 zJ;=lLgLe;7YmiOz=q8c2N#(|GF5bQ;KDY(npJEaUq0^M4UNPM<9 zKg#|B4IUhl8nmjH5|aePr{dxW64uF{@%vzV&F-Ljt?K%8S^!z%bZ|ZADEMORbZ{>{LFpMvL)A zHzLl!U8DfYVAwl{ZpLpuE{Iwh}8Qp-POn}ac6AscdcK|n8Vnq zZ8lHd3Yyy9lQneGPyc%4AhqL<&flNT5&3Ev_S?2Hm-g8uB0+hpIH_Cx(Ut)^eH{CZ zruDQUN`>@kmB99r7vCns2|T(p-U8A`+{4NPX++Cm%KneUv!YkA61b%aRR&|*l>`~R zueMGcFoTVk_gz{;))?&dEKNV~73fr!dxbFz$TLP9n<=$~TKf)qeF2!l$U=jL7J^>G zhb&FfbCmv=u^+8(L3hiuVKP8fE9Q4|HBhFjhWDmqe?)h1KoGjrZ!W(VXU>$3bjpwb zJHKmKaqV7uf$PV7TYZ*0Wkpe(Z8`mE_-=%4x|=Or=BmAl3sMaWM$ZN=d%y$n96hZ% zuA%XO=0X9sL25r-gCo0*4yyQN2xMU*7QMUe{erM#NJHcXHJ)6RIo26?9C?M zx;;`h;N{kRH}jqUFcub|j`BLRyg}W5t3bK|=w)`bft;&(tgYqW8mywya-lF;F&X=!5+AqAWy~Ktmb5x40-p z|KBKw{vQb>3kUlG+fKYYXQ-Rgm4ssE zEKF_~X&mnhivc1TkJT2uk+9e36p}pceIua@Mk<1K}XZGERypvUQGZ#GjYFeSE4b2&}J6!8{?C9#vs%neKmm67pUuA%~ zAf6cg=ub13?A#!j8sw0*mOjvlv))hiC4a1oi>9+|Hm%{ZGxs3L<$EB%OPgACN{B z8W5uSss~p)A+$96bv21-d#;4k0xCI0wM|B>S8fjd7JBoAadR@ft%Vm&nW~B;(%zyK zhwOiT-Knv5UqPuY1pmx~Uvbk$3BZDn+&nQJujBUB;^7BJqm0nfO|aOb*e*jjJN}j7 zw-(&FE@u`9LL)H!!9!{;a3hHaYkjX38SnMie|kKd!$6CSM!McZB<&ZmmwpA_#K~i^ z{}M5q)=7L=|Wu}u!G5~v2|G@Ba zsV${bryB)bwaf1KY2;1RU`&DB`rTQu>O<7wpHk^>nSA+Q!#!0JC94?u7GpoWo*nK3 zXR;O>Pn6;i4}VBB0K@ixDzflx75#I}wUk4FL3{=aTN-*nb$hbZrN6}y!S!Rgxnt?@ z!dL9_4*p(~-L*cVd>9S{rGUdlh~_^y+oK0$8kE3of%K0OADOfzoUQnyAwt(KqaJ^D zXY&+sl21ncU>sKwt?}FU2#~a-bLoqjUr3sJ&Kv0!aI7UOjW5cd8_x@B`!mXv7m}~Z z={GxVh#a#9@i)XS*OaJp_U`PSLC7VSynm`jJT?h;=M$PZ`4%!>MgS$HQ9THKLZkV1 zai$!TUz{Ii?MA@#Td9+VpGX#*l~d!0D={1^PfVZ+Kl2SK*bDKgLR%l~k(qW-0l&7m z!EfN{F3#SU9ezk&l?7{Vt{nGX(Z57T#3oKn-u@lM*&&~^KYw!;@qckp9l#3C=rLo( zQ*_7m3PDj>j&Dv3qXYiQsdyD0Eji$Ra$3nc6`Iue?3&>f$SvZUnYLXi+ilNDak8d= z1rqjZblTjh!Yx^cDxLx71ZGJK`M`L63W|&}FHNZ;epe94I)C9TY`UbsZGC$fnTR^Q zxavh-)d|$-%iKd563=^B?!GKtZRxI3$fWU~PPNp^(r8Sebpmu4OQ8xMzp$|->{1`i zY!#ze>paD9@ii4YFY_qHa+((>+80LN)2HY%QA*5hVk=a zSZ>4H*KqnWxvIU+Y}7UxYEigum9eqQ{uhgA#MqVk$p8^C+0$dYlw3C*k*D_4!{~Xs zhVt-h$Q*5M7Hs!m0`zKo^g#_n)82n8D66M7{mgaaZDmOU&`+W{LY3OA!D$(^mhrFc zgdD%cV~0{JdF6?>-xMuE$I?<+vsyIyONkv9+*BY3g`|*iQs2pSr+156l?1bQZT8FY z2W@@o%>eUf5Yv>u#+_f=dOm|xmuaj{+GNQz25SubF|R8rGkv0I$c z-g2YbG@CXR57%BLtDC4(S@pRRj6V#)W^z=eREb$dgnHW_DRN^}j%@EJ<_;T&kOnU3 zHy_VMT*k8jeF%UX)1M{uc1qYTDbs^2i3aywxFO1cu7O^=r{?YT#a1ck`KyIL@bc$P zlz_?Ehf`msMgN=>s{4wZuve`amZGN*JQ45AAJ7=#bmadB{Nwt6Qa?8C|Al+3#N6!c ztpBV2|J09%ot2aL{~8>VgteWUxl3{z3_bu-Eo*CmQH5G%Q=mQuBFF4>w?Xhiwuxk zHxMJcfLVbUD;`EzLmzq!e0Oi}V1I9K*vM?jHQ;w2U=TY7%81Jo+Ollyhc&?+JQ!dU zpMekaZ1wLN0kX_X7(`eQL`eyPntWgoeD`P%^*gF~@5TX_h)c(5}qE4$3EMQ z65wBNoB)4*kPbn<4iFkzJUm=LfBWI*dw}Rd!(iu^=Z`=>ggJu}uB2;o0F`8{p9ps_Oe(mTNqJtH@J2l;aw_?IMB*2iHHLfcJ0 zXB21p5$(RbE(JFM?#~oU>+t6gZ7uU> zK_D*eX>zo3@GCJ1ptd_Y{x-{SRIoC`*(({NDU1T*;tKv|#LxMrj0W-wN@O_?b@>%O z1meJ0#&$Umd8=gr()ZuYeBdb=8Va(RzcWV!J2nWt+XDEIgt!N5)Bk1=REYo{-L(XW z^tIFhly-Mc4RgK`eSH28VSi8SC7MKJ9j21;G7QW>!n-rq-XwXe*k_w?pceuCOw}R zez#)6@&XRB@>ncJBmPK6KNny8DVw9=c`9!CywUqY3^F7Ih`qkb z&Uf}e_b@;D_^AG=lu*KW!2FJ7(-0bAZ*xmx*`fUtm4bvZA{{ys2Dpr6^Y&*6%;S3( zE=uZ)L#-p4)V#Fpn!xiEIO&04H+IzVOzF6p6HJF)Py~(VF!tJf` zgaBZt$vjJ`YPY-mv3Sr8k%S`;7`1mPlU7;X~~VI{6VjO$u-Ta3@9 z+;}DT;?Gtw=s-JUAcVRS)oP%+j;DUil>sPfV5hz>O{tGHH7+-@%LyY`5$~M4Fc}Yd z*~=DwJ~i@{vOG+MGF`p?k+d07vUlme4p>-T6&8w&WS@pN_CGnNY8FokZ+Z$8)O~W< z^ZstXy3Ra{T9}ujNWW0kKh=1I_F>I!Qi#3d4)fXPx){8oXf?ohGUt&v-sgEDTm}%C zpnkhrG`bAyo81H#N9<&CLEWu1+Zfan^G^=wN10A-=m?j#S`k>Wzj`Y&iWXFQstezA zM$K_N*n8!8IQi!EBdeI}OzdnypkPEuONNm%&(Bmrn`hTVG!BVv0VOyXF8)XZGX7Of zXJ10rUcMj;Bo+WRCPqc6SsH2~r~$N=Gddb{7F50&3KPzH57TKK1(A+uwH{p6x|IA_ z@U@9E# zh*%SPo;g($FhOt#aeYfiR3Yygb(q0|YerSJRep{(I@VF7XY84spL8t)F*#T{LBcLw ztBPAvP(PXBMwa&ViC2l985sv@fkeX%<$?T1-&SYHCV2pE0za#++-V)cIw6A@c-``M z)R2|A+i$~pn!%Bov(lWp^S4RdG|J`59<=l3UGO)&k(6VaGU#hAB zSryQ?&^xsVe%cVf!V&h7W$G$A?ji%=iB!(dK7?&;Bo;ANi-;GGj~V>s{S|eR<)USe zj)Pt#pEz2@x^-9P5BcfTFsROHSI^re_)|sia{YtoipLjAHT6NrTLF5jfe5^Utaq}9 zhj!hL5*2#U6~&$4RRs9tQHJVY!ifzdtWiAG*h^}H@bqiS6;rjHUL4+(2;1uLw6-kF z!v0@v<#zjWq}m+TR9jgP$jD-bPl-i|F zf5=Nu#O2@`%zZ8B`T^%>LlxKnly6p*7SeV7vP?O6X8@`C+MiqKu z77M^=Bc;Gm@a#F4p{l!fByU-Z{rqu+O9Ip}B`TmW<^=9cXiqk?ybP0zPXDM=cFEFi z&t|vvv%0Mo`r6hyKNxQ~ilP$*i6qG6& zwvH%k=HaMbvh?V({`RQwwR$FqRrU&vibD=G)SPp#kWvfIo5CF%!kbWnvcs$E@oOjp z_U;OgBm#bQ>G>1~D{hMEZN6)hv>@YbSENoiFIGI8@sE9+OT(6jj*r0yOYtZ5EV5m7 z;nE9K1HxTr=eleWZZ+e?(m%ZKm0C5QrMcv#35SGs!iKdPL_f#o8T&WV7abXj?W7^z z#!@w!gmVvi%-#pZFmGJLVgJO^1uWU!#`b7^W_r0l3(}?MuNL~t-jY1-(%K8|6M%!y zuYacPjltT{f7-}1PG_q_$EBUj(v_BrzH}Od1As?SSy8nz^E6f4Wwd%{N4j4!vQ}&` zalv)Mmlb>sC)GXb!;JHsSAG9f{z1w2?&t@kjapqlhp z1t1vqq!yclW)XoDF! zI2q*>{ksA06{HUOVkU;OiFAtOy2C$L?J~w^&XW7${vkt$p?GvpV)E*glX2(`(9sP7 zEfJ{LU7yt}mTZ@Mg?G2~uI@@&uLiBV2Na4TGV_!Rlx!+(p;;j7^D?;aN`z8(CPZ5& zrgP!+%x98@y(Iau<_M#9ODK@N>D>xe*Xbz}0kFU2 zyybDs7{!|{Wh;6?B=^%i-}hb!OqGA)CHXRG`4=-OFY$^9j@mRX)gpuGwTKuDl$tk8 z6OhFIQ;y1lQ~gfJ;waKo=jX`^i&o_{7!<{WSLBSV9z@;o-o19*)9|ngYGQ(MeFdj0 zo1*0??LXmz{2Ln-f4#d~OsncQ3xH5oW1DqzS2FO+=0cc@EYV{jLZrS?!}eu^+u)QA z>J_Nb;VjsbCd;sgv*&l9<+%qVW-<9hYg6Ud>OE+S8hg0^<^K}-&~qq(OQQyyv(!FT z3zOZG>-sc!Jwh>@VhEEq7$ghgtu49T_LDcR3?Go^olepVsvQi|w}X4N0LX4qqzT?) zU+FxK1)8Z|r6|Bba=sP@6W-0P5x64ug~o~(beLPs+v-bn`@~wP7rf%Kd*nQx`JuP& zPXYal9teZL$uymWWv}Ru8uw2pwTob?v)E!#A;tXOg1#0%G7eyu=bmZsOR$eSpkT#J z?aNW|kJ{C-P4`AbZ8SQi0XUUPT&h6(+%FjR4{e5ZWU}LNNTn0W?wY(QrcDF+nqpT` zhJ2baTAR0_3@iF_6>N8)cd#iAwmKrNntufxA|3qbF%w&L8ec(Y;1G104M(Vj6?{JF zm+z3GfPZV^Yp$)N4PErKF65`QWgmN(CWM2+0&@5@O-N4nKPsgI0ESu1XmAScf;g?j^d>eux4q#KLaC@I5(4m9Tc0#4#}{6oY1F!+#zR}*->6o1)5=GP-=o?F1a!*FiqTiGjd*dut5`j~C^ zTU2~Qz@8^B^3*2~07F~sr@*Ox7?Rk5^4sQwL-OMn_?3*6D(IHfgybsyt)&;EiqA5~ zkhaCUq&XU|yiE%g!|aoSX^M!;SYt_Q)}YH9MuN0i#8qk<7a&2!i!kx$T6GYJTnHbv zv>4JR0paG$Y6<50uT@ubCspo@l2%TsHlUpB40;6&S98D#fCXznk~+)k`491Wb1Yn$ z=t^s5qC2vQr_LCSa@lq^Jo(qwpUfa}D>v+rX$aWAq>kCX71{*2V}<pZ7Yz3nF%9D95KFSQxm9)qj3|WS0u&J+dZCNLcNLddt)|MaHnVzy z_I(ZJ_j|ecfMgPLB_Ur^osVHED7BK*1^aB03>Rf}`1i_hni?Lmi9D4?r9!w?HNEIY zzf%(@DqM}M<11b{9q>?9MEFeHF9oz=lfP@5q`v)e%=IM9;cZ+7>?=v{Uu(brR>%$A z*AusWn2wUl%Zs3giQOX|Mz_cg*xpA4X`)wM)e2b{0=RzVIgLgME>oELTYR7CnSnox zm8>Y+q|bF03aaIXO5RnTO0mrcwa}^Pc^lr#3LGnr^0XE5m^kXw4$wC)>?$DXnn=2tQP;WID5tfNc7160biPMy5RO13N%l2L(mXTi<7Q46HHNs@d zkg@*}$Z^Q5?})dR=7_0DWU+71XN^&)ns3%Krqx<+{QFL&VPxYfwv#|Dj)v=kn9EaO zKUg<|WV-m&!&00DBYBN26^3NS5P8c;N$na)j#PsS!ekqnoGg`i-p zj%iFV)ibA%GP3Xt@G7EFTc8U7~kWoDS&*2X)aS; zfCbE*^#XwTPulSH6zpbMudl6AYuDA-#S)iP4yDjO2P`Ccy+T~VihC)bWLKkzSa&!m z0pL$Acp%lK7vEo-s-i!$ji{#TOBo&oC8QDSan*bC{2y|FoB@s$9IlRa#f~`&_52vM zHd*T$TYjHsD1azrD^KD2vUvX>fH$cV~2^Q`d7AK2!98;jO z{(F6Grj#rFKmUe;%VQsM{Siw#f(Db2lU-$;rS_(I_XS@6rXR$eF~k?>)Xle0 zDc{R3#3$7plS2yOBzAMykRpX3QY+`_Zru^eQa z?&F7`U*VfPf(O0yzenF*DZaFnDLKfL+tPM6!VX>G_`1jVl%9Vt0e;Qi`?caLED0Nv zzkY#ebL5jAe?$1#WuQ|y`mmjzf-ag2r$M%PlR2C>w_nEByO2lZ?-YdqOKF>qZ3a@j?SEqZPk_NH5F zt%o%-H8nAWA8{`h07hq0&x=}LZPZa0-SJPFB`a7oaLlU@|s&u+4W)H zIibtjt7LQ{uEX;-Z3$Q$4Aydd6nEB}KP;r@YSRZMm}b!I0q~QJBZ;eo5;y+!=u@d( z2|G;k!&fI8UkX6M74gy1hJ3n^EkQ>y{a}gqV3)(T0P*2Rdj%iKBb-0O8i(nMdGog? zcf+%)9QRx}5CRu&<4-ZS+jC3_8kOCDc8O>NHq)lWu+4kcdM`WtON32K^UFA=`+MXs z71YYT44Z6b09$I;?*$j*eUOEIa>xotPt7duC5{<-JaXqaI~3SLWNe<2ei||ZiRx2x z+b*Kr6e|11rAE6Xw|rhteZmUn6F>T{5AfLmcPiSgW&TM9-Tr6a1ai6ye8o)zLuS<= z$|=+xk(kTTu+n(b=W6ad7eitXIzpd*Z zie(IFRko7t1c(;D6E1DdKu)4XhkX|;ubwYUmJP_6esf0YE=rg+2M%<5H96OL7JoReat za39D`XCnz*TlR7E*m2U_WjzyI%=ZSamT}$}ml1 zkJk~1;w!Uv@fQAxYjaqrrPQHCLa}sZG1fB40K%4TFA`@uRwJW3cxz#k3b73Nzf=KU zh5acrj%hGg5sHBA)|Zoj(J+xThWj}^<=6HVnRQK#x7Ng2XAy^|=thSwt;+Z-m_n#X zJt}bxd;GI#p=EkB@eLvOt3mo18)wgv{ZI1Lh=Qmp>R-JInn$$)n1M}@z3ULzd9NKG zfbejLUmlh6esdHNw3x6Bp^7}sDIPKp1jC9%7bf=}(a98YSxZ3n8Op5+v%ich=&G8^ zxhT3fv&m3f1_!T2NCO-Afd}1x7k~~g%3{k`2g@&JqO`d=_!aE`!8IzP0ZCPaw4I*m z0jbXEC8Q6dhBo@rojZ|`d+D*ypkj^>0OWxU!+YS!i8ziv=-#Sk0l`y5{Vje+&DnL8 zPbWb)5rZt=vBpuDfK?ehy}KPk05;RoL?wYnVOd7;las3mqE2fCBiW8g{r;*Pxx8|yYwfU6ak z^UFS>^w(M|$s5`BItv9u0a6m~Id~D`Am|Kl=(BUndS{hx|6#GDMebTI zU$kbcK9FW|>D>BT8l;F)>;Arz8wKS+I8b@`>TjPM%ddBL1Y+Ne0HC`sV8hq!H9T9u zU#*vqN__&S_Iu6NB(l(%hBPq?V1H@R!f7wve8eDqjl6y7$pJ6I5?l6QyQ64R_4f&vbjIpd zd&MajA~)UW$BQ$f|5TKvmtPZ%{VZ*@_%DksO}%n-+-7y|%+1lfI<5xNQ?(=F0u)SI zuRkG5x=miPaHSsggMzBiI@2J)0fxp&UPY}bUC(CqHj-YS$`KwNup(uor=%%#)UxnO zG8qWVabMVS@E=~t(JQ6=QQ;wlg^O_brj$%bV4PTOtyIPc~8D#bEuaT z6dkK(1=)bu$`LA`2BuD39Vci880wD|8<;>?qchT( z@w(~@Bs*wX(iuX{(SD9{%y}jQL?$lYt@)X%oh)o=B*Tp3dV-D~Gg@7i`_!kD3j(y` zUtr-E0y1H-FvSi+BPQH?55VF|9?=*jlv~)_gD=8wg3{)r58tCY_o%rdIfquV#MD6l z9+Z_z<}vAF8^&!3Vz6Xw+pT2Mn=6j%Ub+bW@+V#+3>8xXhg^rdQ71*>TRN&-qKRWf zaMx_$9%HJvo*MO?pzE0Qw{Kmktm`BT$YI}oR6VZZMn6)n^F`TwZpM0BOMR-i{bxS) z>fN=NAC_o+CL*W3OL+R5)}-YPtMc0~Mqi*m^&_J+X-P}c&dqgNc(5u{u-7MS9ewYNea>40O9kUUftvUEW9YrK}=g>j#VISaK*BppyAl& zq0-pEMsib>@2%)WMH>?=qsJsvNdF7T5JqDCBQNuP}+X1yeOeUd&#K2W%&K=2PhF-e~21gxN_FMQ{-YPBP3^Lt_uEh|75pFsR=djFm@Aks1%!?Hz$0FEa`OQUG7vS@%UgvNzGd|Wsn2c#$ z6=8qx%0z=%=*$8#5;gwGA)PA*S|Z(tYFUKBYR#_|=EW$eD$7FbLZYna@HHEi7%>M8 zW&(MLd6W-B(Bn+TC#aci(R6bHu8qan2vs(PZ$Try@cPPNVxfks&4FUkgey#r7 zz^2^v@syX?!(5G(k5ciUYM01|_uU@?gITg9t`yQ;9s64&J`3^c(ZuNORgU}+9u_FE zNr;&l%W%6htJSuq?!;i>1`XQ!=5s~X^Ga@u??x+_W*Jx?bU`oiIy1J%Vo-_gXKR1i zRbI%2z;NtMSxDC%Ue%}@jiZ;ifTAVOBqaJSe~(=e-cT#IJM-%J^Ic_3e*=mG@cm!1 zfv>osU{SQQtB>XWx{c3}Va~ng7bVjjCc|M5>5ij58SO3f6xnRHWYW_c6t^<9wJrOD zIgjaTqW2@Xp-{=`26}FYc9^ipnNXQjhV#d;R5~*?75$k+*V2(v5b-drsZ~~judR}^ z4$os{fY`ydA~D0MJ#OgE16(t!6j`DE2mVDH;WPyaua|N!(PyxE!m6dHW!f@q=GSUk zb$SzwlQRI9H@UF0@0Vn%4VmBOVtKp{owVV&tOzw~2h?I+z5QY3vlr0H8^~gt!M(^x z1FVS}0@>Gyu`FnyIb11t{Lw#($%Tx$Ygxl_*+$|sWza4o>n`E1Ji&se5^Cm$shyceMqh;- z!?2}QQDpTr%1PwwmEJ&?ggoLlVi-PEVmx2YL{{`A$MKX&L5adL)wV~x5aPFS!y6~3 zyw(<`X1RD}{y5ZF#%@7-?zeXvOLd+>zJ#SZ^iaRWZMgDt8e#+32tLnTxaNDGvhex+ z15UZ)ukmEH)wsfy{lWC*m=z)^Adr=_QT@zoN<=FJC9}k`M}G(jP9Ic&q|?XrO|zWu zEakDW&-m&6Q*Tu?b@1%}=ZAJ>9}A zk|YxvdPOjFx5wSJg-e@v0`safNIqIr=i(4cTlf{T;=1p94pw%#yfu>+nJhF|?gOLF zrzN#+xxw3uHfHF+R%*6H((NK9z3AJ&p$vzV_?CLDg9iML*`}2}Uf$%cv{PF01BVj^ zOU7qr=RxOookP+itLZi(F@-7z8MM#o?qe%v3_fL?BbFTem&_2t6 zlE;8zSxRB?e&aq0g%5CVf0SMnh@_q|KNJdTI&R1$*Ggq>yT_{GHN_LvEcfu!@umab zz1#A(!H~ZuH9Py^lV$k31K%^gB9O%eS)%2+buRr4l`j2&L6=5wW#ih-7x^ws!P{kR zCr}0tm%@5?-~Ai*<>G1u$0h3!XpiW(8{i6YBRmKtvnR|m#iX_-f-?f zNQ7nH@JW5c|FTeTAhY_;*5 ztW-57@MWs>H2Oy|4Pvm%|G{1fHV)h6kaPXpY=Ixd_ixS$M8gFV;Qe>>KdCD&0bbsJ z?4FMN^=W)# zhQdZlv}JrHx`pPi9f)gWcrilx2JT(U`@ptizOTm&*WLXV&hqx!@*di9AKIYtp%r*h z#H=H_?wiPK~!4SF)vm2~5{h#q}441&tvh@GQS?|K6ZHSO`^WvvD! z5tPAZcW(jv8(J~nkLfv}`vVlOEdc~)NQNsBaSCx?T^IN%j_Gsjj$8tl&+-~?g?K+(s z@FFuBxHTZK0^0&Z;9ak&U;-*f&QwFjPBKz4)RheDbuWQ)fZQJl-GH)_Am$4+eCHri zfxzKJv$ZDpJw^gW4rKsVV#=eK>(bjm1j#y?1Mi^J#K;LvzLhN!mn)v_fl9)Dwa)L zv!{8MW#}#Gq!DM&52cDfPkt)Uk&eo0sju^y;ClP^_RRqvkLIuZY|eV&X8s#qp+>8N z2Hu2f9@{1Duy5^?JwEq;a3t$7TjnNLdh#*4>Yi1#sghOig+?9x%eC1W1^iUhO-u;! z)ph-|#gg9e^&2=(p?_GW=PxDxEq$%YaQ@Ec2fj;mUC}=AhlTMRPaGu%=y5AN%j-&a z=;Xs`SV0HT{qf`CFfg!Z=SH;P=wjj=m6xFBVDQ&`|IaOkb;^?~do6uICsr1px#AA? zDTXaKoTqsEW4D`3*`%Ty=e@6#XLds|EinpYNpr*8O)ZgGF!n+H8`qT$$!<7B<&US6 zOi0&6;7rA=>uCknO|rxqRKbG)`S0_7Uzv0Ah2i}k&&**lZLKpQKM$ku0ZE>hpv&#v z@N2h0ICnh9KIFj4#5X^et6Es}$O3TPSJ%q1AAIbaeixYUhj`FXDF4OdMRSrnrg7-Y z*Z|cDxZj|#D>KBs#kZZRVBFT8*_pKMYi8959)!C$Xl-#)SpQ<+R3h;APMR?q% zlFaYiiQPVe5)N#jR+S_dOFyDdod;R*P9K`ir6wz8HsDUxK$E=Fh@TbNvTKJ?A-ji- z^5G5GTk-y8E7xzPJA~f&|6&Kx?6guf_AJKfsWY6eXFs|mw7UclIwWbBG0EJOILZ2) zefE6jB{#DUp6tn0U9>i}<}ttgdQ+VdB-oks%{GFHj3cWJs#?-4 ze2XIEuTJxPGrmuY;Ln@QcYWkqFG%dr?Eqz+H=gLgSxbwcV~19^ zPCLBzNA52!_awzH#*N-OwwIxfMUj~p3|3@Niyux^v>ZA2&hOl{XRq%FDCo8(568+r zQv_$P2i?9orugDKXC`M6{$UjA1Yz~$NRXa0a4#l>f})=z{I}hnek7;3H6L8=k2+{w zTTrC^DFKydOLbgAAR0oaZLI7XvjxQ!W-m|I@&-8v4@%TFsRpuW{7pCe==|n0ROflv zLmiL0&ZQ<>S!qm}MI1*?vwqR+Eh;RHkwj+xDP@)o?zmS*q7#Q&rH(w_U7{b-kY=2| zjR6m#d~Q`0EF|zBX&LYKP2E{DS9|9o2UxN_;bb40WSF;P=bT=wAVobFr>l+x5)C7< zUpz^>Znfg7%&nS^ZBs)@-Y6J!#&aq^FXcU3=6Zi0IfT z%z-i~9hu{uP0Y3F?!jtc-`QTLJH|{#{fRU(>M8mJwO$iwpxu^}w2jpw>Q`5!cubxM z%lbMejavn$v6$1}(VQXS6ZW-(O^T^stxC0~kO0y>I4vD^D7^daEXD4%?Eds@ZQCjQ z@6pW7m#iBe3gqSH;^O;@KXbj~1Tk@PGO=KCC^?x+n?NjRn5Bh4oLu~z|CN%A6;b!* zFE$Ofadm^xfH?o#9*K(!#PzR{U8A+)xFUz`x1fDqFJUsS`2}Bv@SNe}EMt~^iqZgb5PL?Xf9{!`vNF_Wyd=VaQK8}uI|zl5{7I86)*S{?2NRN z2t)l8{Z=_2k=BKFIsw*?R1ES$S2~a@(zaHU$tUb)Tb63W7?JYT+wl8?0DR?~U z#7KdvptuhIiD5KS5w3*^75QkG=z&!i_;m9`eyDqZEH>=!{4o z`C+ncw{uinsbAjTUV3LVi^t59hZu-7cQHd zbCb4OkP(eGKz$uT5gWMHzJRGa#D|QaH$j~~_=xraUR$5|kU6mm9bd|iyBh${#M9IT ze$CHS?uyiaw-__C10tsI#AWeq=C3R@bpLoU)m$E&Vu)CT+~9Plek)&zLEJNrk+5r^ zN>#IN%$)uCRkXpZ=nZ+*vfO|Z3~Y)dy-lndQ(aOZDJD5Ky~3GLY%)Emi}!ScdPy6* z3t>i%NHA(#A3bb@*0>YRMAFd6o8|pJ$JejjxWGWo{0UggahFsfpVfWvwyPBw=O=SO zAg@?mtaFzm&-unz(vNPWEG#4A>9jriDUrRZ)B1GNX@vXKmumGE?di6EY|O3Cg-&so zVIOR!vY?H}0ab?cxGNEiRT)i`cYa6b4IjBoR@_r=ZNeOb4)OZDm&n@FOe$%7Hq8}G z$)~AZy`qFonyoLZ>tgU+rVv7^*6TOqkwrgVL};wtKQXa;db;?ERkvldR79jja&AIR zgYufCKJ13}-*f2fj=Dx`IAd2_aafTUoh8nV7d%>bkK)BYW4-I%Bm|=gGT2X~*~=R( z{CKZ5UQII&WeeLS4J%q7dKyzVCxwbhtAeMZB^9#sU9tHH6VG}Svv<+t;nRghIOVGirmvbz+AN&YJM}7w0#G`fFS#g^>P`P;0*rZ@CRz!lZPk zyFT;HCbp3IC>2rSlL#R;nhig!7zo=t5qYG%nLsl^6Iu=4HLz|ABi{Ae&uLf-Z0?w9 z$6_0Jr5CkT?}=qgu7C0VXY<&KW8Kch;sa`3FuUjUMU;aJ9>0r|f|DPA1*%Lm!KeDiF=f(wF@4Gaz)kmLzcz)B zt?-?yY}bVw8KX|_-KyQH?sZ-ba%IVxdtzjk501#YNqW9ZM^9zUgSL_$m z0V|5k|D&D#OXZP_6iW#eFu>$cxAC^1`A6cRO{2#}^LN+yd#2{(1fk*n#{*6clSAIo z(uszf?>_@+8a)v~DNa6+gn$fKkY8F_l2<~2N19Vc5CoRu2MKUkR3nxUfO($`jHANj<>J9)V31J;WBvzI2aibr diff --git a/diagram_gap.tex b/diagram_gap.tex index a5ecd70cd6c34ae91301a8c628cb58fa980f5db3..1edd13f86e9b8ac2552080740822dda0711ff090 100644 --- a/diagram_gap.tex +++ b/diagram_gap.tex @@ -26,24 +26,24 @@ \draw[fill] (-1,1) circle (0.04); \foreach \x in {1,2,4,7,9} { - \draw[fill,red] (\x,0) circle (0.08); + \draw[fill,red] (\x,0) circle (0.09); } \foreach \x in {3,5,6,8} { - \draw[fill,blue] (\x-0.06,0-0.06) rectangle +(0.12,0.12); + \draw[fill,blue] (\x-0.07,0-0.07) rectangle +(0.14,0.14); } \draw[<->] (1,-0.5) -- (9,-0.5); \draw (5,-0.9) node {$\mathcal{D}(C)$}; \draw[<->] (4.9,0.3) -- (6.1,0.3); - \draw (5.5,0.7) node {$\mathrm{gap}(C)$}; + \draw (5.5,0.7) node {$\mathrm{maxgap}(C)$}; - \draw[fill,red] (1,-2) circle (0.08); - \draw (2,-2) node {slots $C$}; + \draw[fill,red] (1,-2) circle (0.09); + \draw (1.5,-2) node {$C$}; %\draw[fill] (3,-2) circle (0.04); %\draw (4.5,-2) node {non-slots $[n]\setminus C$}; - \draw[fill,blue] (7.4-0.06,-2-0.06) rectangle +(0.12,0.12); - \draw (8,-2) node {$C_{><}$}; + \draw[fill,blue] (7.3-0.07,-2-0.07) rectangle +(0.14,0.14); + \draw (8,-2) node {$C_{\mathrm{gaps}}$}; \end{tikzpicture} \end{document} diff --git a/diagram_groups.pdf b/diagram_groups.pdf new file mode 100644 index 0000000000000000000000000000000000000000..fa29bd9f1b02406b4f26e8783ccd41b04d5cfb35 GIT binary patch literal 21096 zcma&MQ*bU^(5M;Pwv9KoZ6`anZSB~$?PSNcZQHi(WWIB1{;8Teb200x`>Ok5b@fyA zG`XUvI6V`94TgMfX?P8WlZcVX-pC4umluXX*3{12#e#^LgPD=&e?J%oaZ4K)Qzs$@ zaT`MyQ&Cf6dlOR_etsBd7bjCgTNsaxX>GYUJPw5J+1h_aKKU)h3#V*-H33^@ldVK) z*JO5Je9#AcU~Brls^!Inq7yeJ0b)R#i{GJzWEk&~(#NjvO;wX&Y0tC*Y(JfVzf$7W zD@%l}t!cX$$?tV|fee)!$}W?)GNFqVfqKs^RaUw?scBfrtCr4D>&fu_>&Nw7S2_So z^lIJiyKP+it-!vPcY1)jpGGGrR69=TqQ}h$Twy*+pO;)h1 z;r;t1Yuxie76x23WM~j>(X< z?V!_ng(Q2pI<;-4q^D_7qpFI?g}3PzG!A+W`)FU`_`hkpTv>OJR^yb@!U{!Qw?*cg z>NTaNLBKk^V;pTOH{kiy7=V-bAhn5|S~!AFoPUVXGJGO8ik2p$F6NLyOtsZJFG@#c zt;nDx7SC*m?Gg9~9CiLEjixesej^^6)`{oOUqDsFax;hAAw(3PnDNz?OE`N3`w0{3 zvwVg>2@Bm@8^nVlnmrI;!G6LrOuW6Ay}5>1861oYE!mNB1uY)2+XK{Y)J?p^upHk(_9x=hr%7|fVl{D`Fx@cl?9Fk88&}?MEPUS%+#eFNE2{;nLOhW=GP=sfwmq8%~bl zh77eGyVf|A915<2e4$v}rVL$!%pwM3>BR%rj4jrXOEBWM(RVQAH3m@`Sac+i>|?Qx z%INWFKcC>o34e2hV;A^@8j7jzOcK!DvU7ji)|@CDmi6?~G~ z>wzuu3PJ;Y%}{fjk6mYW;?9F|M!B4qcI$&eCffiLujzxv5+wkgaqp8t7JUGdZ|KXw z5*_K8wP}QHnHtGh&Mjn|EFjfLq`J$7R!)V~g9EC?5|r-hdt|vILr|`P)I$NP#TBGs zxM|S+Uj^73V=YK#k}kqAAVG3Pg{q_j)NA`_bmAvO4Tj0?w19^O&^&-)yC%TvasF40 zsFkUc^Ny;~G&0Z9>v?IvK4#kRYt%b-SPfbTWfjn>XW&1){!1eLYZkz_!-7}qH!O`; zMesbMA@k1dRMXv{iir$$Ca}sPh*j5+Zp=W&S@2z`kb2_&Yb&7kzX5s3eIC&cm{oO? z?3Y*=;*mLUNDa3@ijMIii;}Sw+i9?vRT*DY((Hbaao1X%gPGfIS=;qc^)L z;wgMu3SSzJF9~C)X}WS9-~a{O)SuhImUJZL10*A#_Q)}}2uwT*s!pbg{KOiVjO&yF z^7IrG<-m8~?cR^lX~F*2hDW)94!|iNr}un!7S=E--F$`xR5a%DwU(LP0G51O|0{_k&AjA>*% zP6z$?wG~vod77a?M^Q`)q?aAOt|R#=>`Ii1yx<7QAT#uF4A?Zqyq2uB9Nm$}IBjnO z9hcfjcRSwD;O;*dZqdnsajjCc91E#;F&c%jttaZ8m2Hd~@y50DCDcbcT5km%C%%if z9OjQB?0Lvlx@ii|jZQ;%ilWS6X-rkJp}%FRyc)d(KaL5W%}agQ&m%P3CzNeKwNV)% z9F4Dx^^Dlrb8b4LPpgPbew#iJt?;$T1o#JkgRewnmO7KOo*?eIRW;O9NH@E3@EzWq z-2Y53>>PXKti^SQ8zxH;TkLy@4vfDt0X~uyEOp=j^RJ9BiaQnIo1wAFOkhn+c9mLV zuOB$#?+9sv^FTHPM5xWnI!3PDYAUV7@8r>xQ)C2!Bk1(k@j<3@w2k|ylVC<1*0IKG zCNZtsmmuKOqM^YzZ7X_-@D=NI^rX z=V$cvjOkmh@1M;B_tB5RAejXVX~r_8lj2VNLa|5HBOLOe8KBf8q9SzerZhkg+2sF_et~yj`j;i4v%HNWTh2k3B2BJQS| zqZvDH_HE%$0-hAaqz-C1R_0tf8?qXFIZJ8)WjI9tsUIA#8Zk6yHGW1tNeJys2wQ#2 zTWRF=J)GV+Q8%$^mfG9_N)Gw3K_d@8M>MxhK(tnZhMoOc@a6s8qyESHOUn~O?H}-b z#~C?ehRpcr%{8kDuJ@?cy(FbB}l_CzsU0$~c+?yv8|=5b#)oqgJE zK_*~U+&u>U*=@6c**tkE7x{Mz0jeX^B#gLZv=$SXNIUxkeZZ5Deb;4r7!uk*R}!sb zbz;={7_T*)WXh;(ln9|Smyqhy{5II>OMmC}dO0P>@EN{Y40{rbc(B0j@}1?G|Nh*Z zguB|sJeuY9&s~ks4!g#Zjnnkp^=BaAH@qxCYx~{RQzMVRm0;f#VFJQrMdk~v@6+g^ ztB-=b01s-d_!ML{6NK{sR%w52Y+u~ZTpNFuxjRFGG<$Ww2Mksrd%iomgPL0mH{0Es z2X5SFOC@sdhfS<`I;{6l&zD~zpebf{)LP%DM&;yJSm!TUjqgKl>&$gr6F80!c%B$_ zSv`R5c|ueoYS^8Xh75PgGx1?lNgOLo3N9vv_fJ7Pjs@X_{ly)(R-X7U{e^em)91tX z!?)oTp@Zq}!ERn$($CSB5)N6Xl@5e3Eri_|3%(gQA+qoIa*PzyiaT=b;rmA=JHka@ zDPG0PW&=a*q+#H+QPKXq!Cs*>_XR2L2}_o@0lE#K$h8Bmj;7Vhy{iPt2hP*;+5BA$ zI}5#~-|zTaL1$0ckr72Qd5~sx`7GX|W2^GJybY$Ec)~uKQ|H#Iwy*Hs5k@V86v#KV zP_$M%0)-)*}uUaAmIcNkMUlm8o4|BL}kg< z1t1MeEJ!6KNrGP-#CqN>g?Wx&ERBv-9KIkFiH2T+8NiV0e9QOxyZX_S(wxZ0GCP&K z{^_~%9C|pzC*ljPT?{Xa9?|y@1TL5eM2?RS&j{- z6F`cb_#2=oJV>OGt$-ak4D1>Y<$pqI4x|AEgpmRkB^4+LB!nb+U{8cX53Ly5)^7{U z4FV)b1`JMZ8HNoSYWn+61+;sBx}CLVdE#n0aZ5g9B%0uzJ`boFoFa|;&E z1`d^^!V7)=l7I$SLegQ7LxXj6cESqkFoH-nb<=SW_Tk660%7$rGB)8(Vca>J_ydN( zU(8v7nGyUGK=B@V48ofRJ4EIffoAsM!UmAAbS6lH>EYn}t`QiQ<{-`r48nH}u6Kd> z`|<{X{lWWwXIAO#&ze=-n3#Rio$qJbc8zMRGPW|`ZJ{|K$o5bNp~K+%O> znfpyRu);<1xGU`CO}YvbZ6ojaX}dWDS8vZU*$@`^k3h9ulBS0~5W>xfz1ZjR!NDQ{ zM?^tKL;)Gp0Hs4N0lztek}9BGsUv+Y#$@%c;)aLMv`Z_{ByU*JBN%lQU5O4YWVJwOr{DTE`_|7^%Awot%djGqM_>DUe zsQjvx{k@GvQ#zRAT;go(13IP`!=>2wxrr82D^FoXb;r=R}w(q@H=;s)oZ7+xym(nAndEE0{5kgy%Un&WlpVh@c>FXD zV$CcIxQH#m=cCt&zk?TED}vcCu`p|@&4&4AIK6ld+?j{nEKmHx(o+%1wzgK|SG zK)@@fPO<330$pXk{rwWTrE%S`3M}Tk0a^kp>4vrKqcY?nj!r()kXS31C28AOMu5Pw z#DW*^8usL1F(R#eY<*P)L2@{>k^Zaq!f_#%VTwH z_@2ezfK*DG<3?J(eaP0yJ7e2>X%}bx>>J3r?sJir1L%bI6fn^oJFgu3!!l5paYa`> z(UMm?>5ORiwWycV=fuNF`A1#fG+U|p$5k{pB_Q}bTqrhKw#PXHkJiVN`R1wxNkxXR zKEmpl3$mJvaTV^jhu!q!$O5S1WkRTpXg{3gin^xVY}9c+rD@jpV=e0lS)d62p+|*` z%}?PM*=Vl}=2cC?7VUby4IPqdJ6{zOc4`gYYgoLFjXLXzk&h5yzh+|E!(|i`chq-5 z^dihr{A`WBdSlwQ%`1YE&jxQ{-50_2*FD^En?E|WnhVb>46e%tqmbxAFXXEcJbmof z(;1m1NQ9SeVP{5Jqg%Q+WBW4p+}A=d@m(Jx_5E* z>vEbPMCK}gOuA)f2J|Shyl|m{x=Ro+DlO8zP3aMP(iEI@5~+3am5kDPN(Jaen3fpL zkV#oTp2}4Kd8Wy7-X9#b1!gEv?~37dDJ1t3EAS+l?TtMNDt8FCYjDp)=o7Q0&uoD~ zR3@blnkP||VAli>gO#$=jE!8GY6G=ucrq} zY@b}%niuY}u_qulxHqhCGV3s>$GGUq@==lx)!7~MJ0Vtl#~E3P2hTX&p3lCjzv739CQ?BoQ(?z887nUp*)jmfxI018*{ke>G5`ZJ>#c3;3pp!`q*`D!d zyNw5Sm&$9hsbh4XU-ZoNvFy0P&BhJY&1=uYTpFM_>Aj4E*K6Q;zAn}zlsT$_L8oM8 zO>fIP@{AJaMpdCaOD{HG@4#CU9-jBSE_eJRGnUwTWx~qXTJ_ML2!qazvFP9a#|su=+8 z=H}Mv_q&JFkEPv?;o`g<8EvEgGI~iUKE{**LU4jBR~shJ2m4iaTWE*WScVKyr&+la2DLBIZ#l)TDIa$Tu)p#2Ok0>%IyQ55BQp!dL-;sm(wrB zHBP^+m;764o35iGZf-E9^g6Wmw}M8%3qm^-{u;mLF9W5i4=8Sxs_pNy+-P8FE*<5A znr^7b{sXkpep1u-@J73g1b8l-_2)g~_re8^a!sLvvIwx+2iizgzcf`=49A1==(e;6 zN}Zhia+pqniKl?DypclWk@#8Bya%$rvbJ{B3$1XCa@^*5LOP&pSf6^F+S3IjQy?!;ZG!-g)H~-+v-;P?q)gu z=8nTxmB0*V$pxb^cs}Zhw^i{BuRm7r-PBnC_Up6mPhT(<(u}D%kw~zHgg2cAa0-TH z<)y6NH1J~wdbU(_gw<_y|HE?uh#<6g`43YJt#(m`Uc{By_0I^Qzt$Vr% zm=!zY7C-TcDZYVIVDJ%t@na@#i%j)PnUtq}SwG9~T&xg;epslyMPOFZ^XDT>1=#9B zBm^Iz5W)Ee(!CJN&fMPGEvej@rRW*a_)_yp4B?RwcYf326U0r9o=7{8Kz`V6~>&2lK%5 z)?>AaN5)gen>5kKeZZXKQ@+S*=wQ!5bP@dUB-$-7dD)m*``bhg{v|Z^$gUB%2Jy)S z08xX>5&OVKxG?&;E~kVnc}L!hRQ>HS3FDn9uz!j`9oMllxTM&@dn_pox$SMTPDWgUf7 zl}j8-mrtw27elS!`(G^LuO|zq7ymHOnU09>_XGWR6XQir(JO5EI*oS1gb1+dp#&kd~Q;`0)+E}qHE97(^Jjx zV7xmFN8+|6WwxtmYLTBN{=V`7+K?EcWj7SjU~AlOGFp8tlX?gO(iQ{D>g6~_jD~Zb ziEQl`V8lzDwvl9%Ea1@Jzr-yy`I(W{X@!?>3#z|LMTpr7_wPMx?T{z6K~enOj?!d1 z`Qu!LOlyw%3`Omxr&Leqya639E?1stp@m)@Y}{vupNJetXC`NY(bl2RAJsKnOR6h*f+$-T{Y@q&t^L!2igz3|W+$3i1DVgw zQ)I8Ti%$7#!MarP)eL7w^V7c^YK%HEMy1KhyYzP%IhYg#EII`1K{gd(Xg*VLpB z)s~BN@7gf!>CvE&Qw%ZTSN5=Hu80s2%Xm(uEfarGvhu3L-}FDY-!0?D{XUdmB8?>F zN=F|;2E*v>$|j=CILq6nMYrmCM;=z{!!}9;b*P|^*}Hd?EIxw9YGYGqE1JZetL>@Z z)`)q8q9Gd9%CI_zI=%uCPXIrPl#C6T?%zyOYj+Q(KGakvz!LEa>R*02?J68Tym|%APMPy-$ zEKiKY650kvTsJWATYI*_xMBjjTLv&1lg({LdY-Xad}fgmCJ0kC)gzK>ZKTlFkehUb zS23hd9P0l~ruMU&-N4VT%1f&e_?-Fu(ygryvpOgJdUek<41{Bj;20m`X5q8>?8I0m zmNiTFHG$l#G^nc%@&r;pAE@bdOFI7GwC@?znAtiXBROez5p^fzSR1R@XMYwmb377g`ucCG>ZKm&od71TRBmT z>ONdj!{^(g?cN?nY%*TIRgqY){*j8Qj>*X2-cbL&b6KI^K31JGwUY5?a)vtr98koF|R!(xMlR1R@F>H4cxmDS23)hxPo)6~6W+<7!# zvY$_~NT`aZXMt=V0D(2^{-NCDy$r?snMlkztLT_k$QaFdZB+S6Y^esb-sy2xQrX{$cn&*mPA zqm-*=j(S8UeJmjsZ+-oy##gVoj@d!_C~2zT$HEj6Y^|-SRk2cEVP1Fd;;3bOEs7*E znYdc#QL1Q8Sdn@szFH>$vO&rDUUbZtDNf|#D|VHm99@!VbmMd+j$S>*%k4JB?U}~D zxZa#CGiTI8Du+3eT+*BXRbl#0r_LJ-LP_XD*%~ds-7W8xwDFOfw@+Rfz4BF(Ju%*a zp&|}pPJg?Tqm0Ng`*{f$-BMh^?4k+a`N9sD9Z0- z7{X2~YDiL~NxZ%Z(p)!op;5$n2+qD~u)~fCnx-7i{9f7Bque=VzgyD`-;E|eyC*`& zMoo95YL{6kteUAyVS&f#3tRbgWm~kw(9?#t-GHV_b|Ejm#C5n^%B<~FOi5(#obtqd z7_8kie-%318gd~ugh+vi3Y4?IgEDa=D2iTqK9NK%TOUM>fTh@+_t6@>M=~O zNCzk*2bH(5klk^*;Ac09Qd_vBCZ;TVgj*6t2xq*sr9(-A6m4JbjTszim_%43S(-w> zBNqEFaNp4rKMI#5!(;v4Dvz|A+##(E_|3~d*;5GZ%M$blt->PW)Pj^D27SaSTQ;8U zoEbWLbc>Yb1`;VQkM~X|J(kc~o>0VQ6uqe$v~E+{W%IdD<;w9^lQdw}?(j?f%;bBn zETzUN4-L_mp9j*lDuJN4(SBuD6p9}Y7KM6bW9%4grST^MPZ zxN_`Jpg3h*9nQ#A8+MCo?!bo$dK3Aiv-<*1(~+WO&G`rNo_3UZZ(?@Dp#}&V9Uy(p zn2_DwQM*MaYz6UJ-ukm`+2Pg>6qmSEYfG+g>6t(+oxzgsxw$@9Qhto32@;3c1Ddak*H_5 z{e6fm_c?l`#XLjCHefS_q|{g*Qy)I?s+?;aHWEQFlh2`;J@aNM2^3Y%N=hj$w9r!q zf6dZ*H<7RfI(cZ5UGPSqSHmz@aY<*bzZ$s8yU&YpKD~FJ29wVmPKIN$sJD-LWsTy;v#K6qsNK=cCaS!9VV z%(xPjjojgY2l~pG>MVD%=T}ype=cOFMAsI^N|Ti~kFP8?a);mFSVwpk8f$kbG_hHmYb#0z>C8;Ar>4?j z;6GO~uoum?rbW5I`_{VC`SAj%f6afE71fo$H2JsnUxKs5qR2*^V7DrhAlUJY%~{6& ziT^IauR|$CrsVnx+^8yddo*Cqe%^LQbpbcP(|>Z7q&W0rtpz;6W-@Fnk7cEz*u4_E zn6d=9AjG@lD;kSu;qi4^tG~fJwVS|tipxul%J3sXMF#UU*!S)9}TVOHnbW`=E;yh9_@Ts-0&y~%0k^Y@>FEv~mCcyAvI>=zce_`8?{L2ip)8%Uk;yTun?|zc4>s`9R z$FTktDP3!j^nD`;HjZyPj?yJ*)rEv$_f^@1^pOIG9~b->;LA>XovgxjqTa&FTb5|3 zl8-M0%Y;}nOFuyM5b1SL%{v7WY)3-3o=%K=9+a*HYx}J@hcN3Hw31f*+7lA2 zdXL1-I6>3xHdbJJI4o&ne8#3k8Iv6CW4;!82ipVg{@PBN|9C_9P>MoY%p3Fw-}UqD zA(y_XrfYv|8;kuDrbN5`Ro=xl%?cvvd9scINuDl!1S$WUg;uGZaRBgfg9^`{aXR`J z`4wK0L#Av7djAAQDrCe2euZJ)zN>1rwmRfS7`G)xBEEAZd3+tf79-+o>(u{MPhO^) zJN&NfW%z87m?J2exQ086?m2;difBD-%z-&-o^OK@C36YOd|;;=i%qCI1A^z%sYBK+ z{N4*3;FsaX0Pm;bU4nBltbXC-tEyMtp+AuO73z!n(&fE{={SGYJs$8+{zlp><#)ls zKN>*OrVA=*Z7E)@cSr#JVMM{O?lBr}Gf>Q6|=5Y6yU&K9iVT?zFm`bTBemh5)_1LE^ z`R;LjH3H3ZR`Nu0YqIhfuWH=2S|AA1SgTh!Oy1Icqe6DWiVlb-@dQdzplnC zN^0g!s5-DQ1Chc*eGh`JA}ZKKSaie?5K*9S@6*T{3UB&aK)?8$Bai{&*1jCznMa2o=AR>eMoqnA}jgJCw6a|7=<`m)ng^Bn30DWCp z)C$54EW=0DKGc#b0#QH(kByIqe?dc5knCfD!9{}L2-n*=koAzjT|l#n3?ez$>pc*~_xAQ;p`DY4jKOSK|pSd@We}riJ(5?eK zUzT_OpNoP9dyHSz zkbyr{%b+1I68k^gokWT=fL;lQmuC>oe59Qo2i=%nzB`&eKbIN@Iz<>bh{>^l00(;_ zUZ4|*kDM*uIoO|3sQ2oTSHi$YVJ~3aJJLQ8B!I&gBG4)5a}a1fmc9qnjUVn0H82rU zJ_|@FICsA;GF6{n!{M?+TCd612~#-Go-QMS2NKcS>*+2f4{uBMJk@O9Z`-dXKyp$` zdvQ(p?Z1@0yu1L^pHs;ZJO5uB8WvPQcoeAVU0A%I8B-|9&ke{|o`!BREDqJHdgGh+ zhx(wepS}K`y%7}1Z^k54j07DX)g7V#W?)Gl;}_=9FYbw-@Q?l3PtNf#@ZIl?#N_JY zW1QMv>-%q=a01k9U+=X?*N4&l8i(j1w*QB{y3Cut3tKP`sdvJ!?eehjJ)WXi``@2W z6l8v_aGK+#(;OUP82dDloVo2HadVM#Qh8{h-l9LR373 zOuy76(f+xa-gR;SIef4YfBwWbIfr$Uxy|6#P0&ee> zpZwUL=&SKb`(0vW71;25-tWi{E%4ol(IfL47^El4Z`_X)J`A$Y(EnVD^=gIhb@g?J zK)urGEvg2AI`+O+%M3d5pp=Qer;OF)JdnYeNYgbwqoVULCGO9v$6_Y-ve?t;*Q9U%x3X$_Vp#Dgb856 z`*OR2@bA1l{Tqp|-Kyb5Su5|M>!8S@P%O|^^qkW#U~v)p4}o$O6=plqpdQfm+x|S3 z$j%*kt6n4{kqNC*A(nX~QLYO!^3!p9dz%6eE@2itE#^J(VAwn^XLAf3U#db|!$EtY zqxNnhXT?x}-uOSlUQcgVDQkZ#j5Vn9_3AWue zXiId(EAThYTUxflQJmeYyJXb=)Z(26 z&Q|Y!&ZOFymUD8JnNP}(+!%r-q=Sk+Z-#avjlJA#!^}!Th%&uTwX2T_N;)$WCWB(v zUqY!4eIJ9V7fKW36d`-IYh4)refqFvXB3u^CCZM)F)y##OzD95ke9PNO@eS^N@rr6 zO2o*c`5u!CmU8j~&^74)7EjhipPO;e+&gF62S#atZDY!?MA}ubEI*16N*&0wSaUPrwoWwimu z%G}UTiDTvjX=SZD#FuTej+m!?>-UdlBeTjuzFth}iSBu>;pqb5tFIJ#eXh=Rk<)iK z#c$Z_+ga-qbPe}dg3p-cR+pJyUld+RyL4SkB0Pf8j{v8Ms3^?l49MY^u!#OrwiNup-Ae8X3ZWSXea)k9shD(=I2561aqL30wzGOaI; ze*8-pHxU~3wp4|~sNQZ;x);^i%wS)h+N=j_l&NL&c`WS8-#;Cfo!ZMr+u9Z@yCd!y zrd$-88;cG4{9LGjmdWFw7maP!Kkf=y^Asu}u%Jg(?`zpJG#C8vF~#QB3v(wv8%Il; z&fiB)@|)yU8bX9^Uf2P;_;2yXX*BoGn8(IZ@yJh_0n#ADah1tNBAz>~z~)#v|FwpHMFr)ZXgp6m+lh&8ZIq?=daIwNdbxaaE!}Z*jJBUmqI9EGP zS(a1HvhpPbP_}+BwMsr3OVRv@uIS0pI9f8|$iy(=>%tFxWc+Cg3YUs``TkC2D&?c!`3 zt5Tf8#k2Lm@y2VNxwmJsyFYc~eI-tZwHqAOXbZ8Yr%#%0CKvKBYCK^Gns-XTAZ&Em ztWvC#ZbP>6;@IXp=VdP_wu%or7b=)ZORi~tIXOK zPmh0IbK6SDKfu?BBNmGPwXBACF!GFIKifjL+L*eRc#F9Ixt(x^wXO`CBSP9KML;*^cHePJJICg+=-7Hy3@^8yhvqJvsOT zYo77kp-^q(<9@4gd{Y{gVxX;O)ol;oFS`WJt`&BI*=^{WQErQ!vDdqS>54bxa~-yYL_;)(8+GTT3SG7+RpVQH40>9L#Lnfc0OW9q+o~l zeq!yex4%=e!@oJ2)V9>$RM+?P9O=@TfU&VTN`BS&lX)khcjP|fn+*=C50Q7dvCb)= zKMTCNQmDO}eS3Cat_pt3-?oA>ohV5CR2|*T#xv&^_Z}FVD=iS`_V(es4+h_6Wvp_L zzP1@hrXpK85ilvuRwPJ!bQX|YqLt5wtScEplo(>n2;1BEvXbuoB+o2Fnsra2|Mvnvp8<;Z^Xqa5X`Q_3N;N_(X zJJ8viTvpM9ySP=}h_>&66e|k@YjB0}I~{Mj(Q$9vS>DBDJo@wl?`8B(BJ<19=^4~T z#-$2$>J{RT+$%YASG(k8ntp~L+H|mln*OxS!-52gxj$sB-=aLo9gM2f#YkjR9^mCo znJX6X7;UB~^?BKX;+^-SBk-+ay=t5$;re>Q!FJ7ch=M3iHVC($X0L#uQ1TkpfEDPI zPc4<^>Jv_F5k6%k`N$CSHhqz2a+BgGEHi$qiImpoX&!dH7hgc$UQ7dvj3-HFJwI;Whf52K}{RS6&~`b7H>E&4F3c}Xk9DC8aep#N5*MvonPeC zT>X)`3EI}8SmfL7rhL(kakDoW@+{JC8ouI#1RG9it=#h5xfdm;qZ@eyyRC-_Q{RS4v*z)F#FP{J(wpGTUv?o0ztXgB zNH9`15m3FD;2$UR>RM&V7-eUYX$mG`^K!AZHJPc64DH|d+DSnpanw1q@wzf3Ipb?0cl>Vc7k7tuPC~`89_vu^ z zu0F;XdoUWzd3-S+FF z-l40vP$0XD&77`=XK^*bEX1YeoE+;lnnMAlw+MKFnx6D;1(~c_wZce&-JnZeFUfS6 z)ZFFa-E6ymcacoaCLK;`-qsCvHu5m}(9{A$N*XO_lV}fq`P2%f!1?t9n(hH&zF}3f z&YiBGx!{srZblw5E$B31GDuZy!}E8fv$BpbVH^b$M{+-k^Fe+ukTsUE^=-#rz=%9% zY^A3P3dUWc4yxs=gh`JJkK?L!xr%h1VdV-0Nmu5s@4FbhtRCwaP1s^ZG?jNruP9C0 zt=qO&!_v9~(~4Pl()a>^#n2u&_WaxKY>nHNoO#Ts*!~VIEh=riUX%hNR2@2Nt)&Vd{3 z@ue*J(!%y8XKCx|Th?Ow;m&k7T=HB{NQvX|b4>m*F{@$vTkm}K%b)+egeVZI-A+t- z85V`>;XW(rLY|$7xjj+e@gJ@?0bdHz2v^?x(DTySFi?NF^^=~g>s-WT%jWeKsagZlgu8d?u~V`w#*??o*>j9SO>MLPok1~f3yw`9h2YuwouU#l2;F+cV69pOs7{^{V6RQy>;#|7A79E*UA05Nebw*&g0}LAJ65$?YuJ z#sEHspVN0vQaMGLKpJ^JBq)F%pi!+oKV=iz&42-TbRvCf>;_L*UI_!|Q)G ztNIdxVS2Gl52*$&u%Ny|40?zYM+DRkD40syJWaJR{N zYDR3pT6MyJ(Na#KMwml>=a*q-jZpFUk*85W)}DC!{G8%C-J?@T4+?o3hW0_7Ed7y3 zXR?mo1-)tZ{-2wquRvIXnUCfc|!} zdl~N!Bym-H2Y(%Tm8+NFtwym1AG{^b_LXy(D1O+n5CSgg2^tXJf8IAFr)r_eau_KH zg^gGj#;)Wa;%Ve9HP^JCvZ)%O2WL?=sNoAF$xlS7ONKzWaX*h_V`wO>d-U8yDxmIl52nN%p!W9byVkT)m zZ=ur~Th&-k<4!Efa~GYvHrf?z`M=p7ep+pO&lu7I=6W^#M1?_21=8W=3-wa0$inD= zugErI0T!>c=810eqrs|~A4Hid+kx2}chb*|>%U5XTpR7m>a2>mS6u|1 zg&3LKn(=DPb64TS&U_H!5xN;u{z35AiA4P|a&!KM%q3=i2nP^oZ`%bG2$*kgJ#-oR zzWPH3Wb4o8`f9bC1}lASw{(-1L&(mwP3-=1-}y-;mVeDN>KOV7etCejkFI2Z<711OA$vu!>N$1%2mv^0_o&6XC^i2%k19y{o z2iGwA5`Z{=rHE$whVP&pCZ3uj0nO~uhBa=HI~L4hX4t>3M5M)3lQFyuEu`m-)loVG zQZDGc+$#5)sD;=BYYhCqZME?BzT$EFM77(GRCx{i#*6CBL|?1rE8^(FLv0Od(wR@V za(wC*h^~TJ0Kcd?{cSMf2@&+W`6}^|!#XYuUIg^wbi(L|6gY2VRDqMgbzNXfp zTu$(oU9qswby< zJ9u$iR8FY!BayHRj;AAZ zNDGTBYsU!kMwpG5-kQSclZ*LHWZW}L^K84xd~9l^c)Tv9jwp)gxuUh(JnYWNcyhq3 z+cf;4HE0uFE}>KD_qpi%SMCnfz6QM6I`T-VjWZwf!tj?E!Z{xC)#mmQc}}ge)r#x- z=Z=+?7)~1P&<;m~W^FOYM@o@?bMHVxjhdUUNpMIYN!y#pNOt;bh7<)O=RwmNW8aOT z8;PaQ``5Zyy^HtTTZ-mCOomo1z9_EjZf! zXGRg>qoKIE6PVB}f-q1r9HcuHnA-OpY67CLZk&FBBX-S-^E|qUo5m3FLQ2%L= zNmjCkG9}tcm;Uj8HF6$6O>ONO2C0VL#DgfI2}nsHgbtE`0Rqx{lMa3pE>|w@?0iVv4*;A@ zNin3d=b83))_1&YJG(OtQ;cPV7_w`nIK1qP?rVXP16N<6=pk^Oo{C^o}5^ zoS$uvb&qLr}m|n%Xq3lQP$CH}wU}>qxw6*o}1Y+BQ2CnW4Kw zLP=3s;Qe8thH25R>_VaDk0Z6$1ztsB3)w}=0%zyx8q457L^+9By@_S?Ys=<>mg{ zQlFWSaALRD@tD4$c%AXYSUZbOQj@V%J|AQ zigU8G4``+B;XaNK^LyE=EZg@~!ej}($Oc?jfrhRV{WH+l zOKm^+4i<1coRn4UOQzA`w&wx)R0y&6v8_;vro_CsPkR(cRHBVkw?|ND+=5WytYevY zEnu-p6i}MavAp)Zp=e_Ohcoq=-L5L5qLhYHv@n8uHpU|A7Bkz0>#*C|;=6OnJ*-EK z_uG&OgeCg%TUUJR_}Cu_9Gmhm*i)ZL8#a#gTt^lv&!+h4haCYf48!R&G$Pp)fW8{h zhQvn9t%7x(aBe*pt=AJ;lPRLEa0u zk^(PMN;AUO!vYc9;>yz`k-%9+)B|F}Q z+K+gyGZOAg_BXedF~V2rLj&FKm6=zB%6{!eZH+CkCC)7mp3NjcZXv;k2; zI;qO6jjgW9!tZ{G^u_9T{UT^5{Yv?Ra4%5zz+Y3njIf$d489j<| zBr+?M=JB4yIoHac_qgR5wzVM$FPa&P@w1#t`r_b}vwuveycEld?AxiEkDVnAQT^2yS#R&~CqQ%@EC=AEDoE7yaLy*bqv zL;1d$t<~4>qtUt(+k@MhSh^2*X8A&3y2{P33$qB(PfaL{D>AZ2OddJ97GN96!oJ#= ztq`Zw;rXS_WgdFjr@ODd$8r9t0+p=A4`P7PJl^v8xx~+VM>&Q`6($=jcMGc-WlTv= zx%QvqlHx2TZr=>X15@;deXT20h(o6Pq~o@PT|Ui$h_Mjmf`|>!al%_S3e9k^8EB) zBfXQI8920iq&{lYcdWUoHq=vyh?7r#8tZK~Q?{CKH7n0CKMlYiAb?3+!|&}TRm*AJi2NZj&3mNM0R$d4u89Kx)#*7RL`h~bY5X_Xm# zVAXZ^yqeBc*R188m9NO>C36R@)fQ6*9BMaVkoBg(?AAjjmp6_h*)*W9N(p`_irRpv zY+yl6lAfor&ds$|qxGO^*j>u+jccx@Ev0(SU5Y>h6|ZJD$8KD2dW_8gL&oOl*i}2& z{Ag$}Z62`ZqL*{(6|OKbPU{yJF?Fhutm4eaG-9=(b{`IGHOi9$f(>}HD#S8Luojv> z+K*>WYO`~N_?S2Sp1*-oEar>K6Q~zlZYUM;NMT4m3fx6| ze&p(73f9>$X!u^lO=BY_o4=j=T5F7jV{?r8{6svW05O%UlEx&0VMsdxg~j)_x!Zm# zNT{Sf9C1&ygMs#uRPadxh)pT66{ymS% zxsnszZaOz!_S=_%Klg!a{X>RLxisS!G<%px6^z-J<(lr$c&!YV{ z)KZCiwzaE7<;j-F$Md&&yB?*ys208=C2~!+I!E7hmXnJWZ}5Hx)zF`DAl&R4+q9Os zqqmRuE~*#q39UNROYN6GX+`=&r%mkg`p^1jbt!hI8!TiDXX{2)0quGD*SlQ#u zKP;R?wEV=GVGb0SGNR7T$y{5C`IkK9pKLERe?J#*tf&~s*wxPiLvD@y9o#UEe&imK z%<}Rh&*|73W6Xhpu4Dw53(g0F#bTU+KK738_O~%&AbqU2lfNSdE9&FqOqP)eVlc22 z1TF?bV{n1qSSMdmF~Fa1a`pC7C&R*kqUs7zFhmv%2SXrmX*n4=aWGT_3>G2lbiJMa zlf)Qn@8g4UB9q7LJ$x|$kiM~oxzr7R4-W@>FE28YOw`!L)fY&<{)|TgXo|u5l9vWb zOF>`|8F?sNMiMFo|2s~yp1e05*8mKV926Yngb5G>y8GDsx%gu2fdPL#3zvdQL4QyE zW}N*+jF9<9vS&;_79dE^!Oh6e69BpighGE4(y+dMKyt?ScftphlZXD9q6#_19Q!c5>XchFS@rNk*z%aYxnUV6k`IN%*HE&&IdpkP&jHZ zjb~Bx99yAsjn7LyOU@P(h}5~HCx3+ZC#qrQqpgD{K4rZ#0QKyx&2$^y;-2!S@nDpW zymK>L_(4u@j_lw*@u#Xg!}>KV%j7(hl7O7pjL|A9NaPVdoD*KL5 ztR^WuzWHNojI-OjvS*s@2ha9MU)Gos5f45`S39&?RDT5}Y&>OoK!LP2@qaOfO&Ibh zsfB*?uyKff$D%rp3Qc-$$)d;iVR#>9~GmRhP2*Rjhk z9EY@ioRd7!#uTFA!U!e)li0@XC`>O^;j216B#?2lB>pWPR@(G-(@Ohd+C35J^exj8 zn&B$V6h6UbY>TvHQox3t>&Mr0Gzcx;xvRAaO;xK>6px~ob4=7GV4r)4E zPx(PBx48*w$bN&}-P$LKl9pHeOYu;Jp-y7z?b+jM$;<sx7bZtq-b-@D*-I;(sui58IV20oF50!*05VjaLx$>v)r=&P=3VjF}2i{o-bmK3bi7tDUDQ%%sAlqHp2Dhk$E9B&y$5j))jb&S%3cgK0ALhdl$DeGR~W_d7| z_5rX_8t18hqw`^Y10%ZGGT6p^&SHuV*p}mgOLMcI9q11wwwM^ON3ghCOemXKHZi_a(r`^#Sb3xDAnu3)==os)X}XkOv~qe+2g1d35dpU9|DbS#=AU(~XD zB6lN#v)-3WM!mFui-KPP<}xmb#Pf{JuXR0;eD3W^`f6q09Xo_a1&kh3>OH3I{Qu|X Z>t~Pk3nKq508p?j910K?*3i2F_#ZdIN<#nu literal 0 HcmV?d00001 diff --git a/diagram_groups.tex b/diagram_groups.tex new file mode 100644 index 0000000000000000000000000000000000000000..ade433f750861e67977d84b812cff45515093572 --- /dev/null +++ b/diagram_groups.tex @@ -0,0 +1,50 @@ +\documentclass{standalone} +\usepackage[T1]{fontenc} +\usepackage{amsmath} +\usepackage{amsfonts} +\usepackage{parskip} +\usepackage{marvosym} %Lightning symbol +\usepackage[usenames,dvipsnames]{color} +\usepackage[hidelinks]{hyperref} +\renewcommand*{\familydefault}{\sfdefault} + +\usepackage{bbm} %For \mathbbm{1} +%\usepackage{bbold} +\usepackage{tikz} + +\begin{document} + +\begin{tikzpicture}[scale=0.8] + \def\r{4}; + + % Line and circles + \foreach \a in {0,...,23} { + \draw[-] ({\a*15}:\r) -- ({(\a+1)*15}:\r); + \draw ({\a*15}:\r) circle (0.05); + } + + % Red dots + \foreach \a in {-3,0,2,3,4,5,6} { + \draw[fill,red] ({\a*15}:\r) circle (0.07); + } + % Red label + \draw [fill,red] ({1*15}:\r/2) circle (0.07); + \draw ({1*15}:\r/2) +(0,-0.3) node {zeroes of $b_2$}; + + % Blue squares + \foreach \a in {9,10,11,14,16,17} { + \draw[fill,blue] ({\a*15}:\r) +(-0.15,-0.1) -- +(0.15,-0.1) -- +(0,0.15); + } + % Blue label + \draw[fill,blue] ({11*15}:\r/2) +(-0.15,-0.1) -- +(0.15,-0.1) -- +(0,0.15); + \draw ({11*15}:\r/2) +(0,-0.3) node {zeroes of $b_1$}; + + % Arrows + \draw[->] ({7*15}:\r-1) -- ({7*15}:\r-0.2); + \draw[->] ({20*15}:\r-1) -- ({20*15}:\r-0.2); + % Labels j1 j2 + \draw ({7*15}:\r-1) +(0,-0.2) node {$j_1$}; + \draw ({20*15}:\r-1) +(0,+0.2) node {$j_2$}; + +\end{tikzpicture} +\end{document} diff --git a/diagram_paths.pdf b/diagram_paths.pdf index e484ee9d748e362e528971fcabe13e31f36afdfa..9ef1e9320d0145ac5feca5a7ac9a0bd1851c8ee5 100644 GIT binary patch delta 4613 zcmai$Ranyx#-N}t35p|qMtoR==v)ed!-pH7C5t#SuEU3 z3&%U-N}K!a^{UDndjA#jBJuTc?>P&IMPVv#CKFt^`T^)rvVl;Jq?Npl;Xy0*Ur*@} z3u_IFk{Ud!u}%N3esZJ@r$U}*6G>mT{g>hicv+$FQ?4(izy#bN)f1Wg%zI}XUb5t? z(%`7W>6gs#Dn`jY{+;HaTvDW< zcjfW*u9Y?>XTVmV+_vn~oOJ3p2RTOccV2cH3G_WLbU(B zykG*5$ZHN*KVea@J5vBMG92B9n`>R%Q1~*#r06A#4c6cn3)x{bPO?_o{AOYPw@|4! z%;Mjmx$Gpbdvnbd>`pnWNrRN;6AyEWAILPSy3D>pMj}#uFWq}$s@WrR_~0XnJ7+Pq z>`_Iz0Y~!U)XoW=tgONw(h+VrGuG?CPfpZb?+lAa($e;8A@B*65^2y^MGD*R0_$Ed zIA;9Dx6(&2#LXU0aP5H};ZscKRx$M?QB$N~oK5h6v%oVpgHc%!9I|5x87vB|IJEUd zR<|8<>&4n9@p7UM^ynO-z1lV^tPtBttZh8D3Zq*|Je{Crk6shi{BbsJj5g5jRye_? z5lk~UgUxSHDv^b5VKMuwpF~i9kza(LzrO3u zaZkV6M<4+0qwjXJ$CSvyD`PTd>?hWiok0Dqk$Nek=JRrgds@-A6-4lQa3Xff(4EDJ|z{?vR4*3C{ zTw5-=Df!pR2pbSxh1QFVn~*Wrqpym?Hrsykz^Ho1T=Xm-yv}$8x^L$Aw<@CQ*Kt;E zqciFGPa3v5v5D<`q}3B?ZSv>qsE_d`IE(uZTsLF_e?xq+lFw@v5HEpE0L9e z$-+#{L`xFtmK?fH>j}RrZ{g^%g z<EOkTu3fSE z$*lWNTQm9BCQ=9)GyFDJpz*&n*!v^+QdZ#Qu0cc43)=PF=m}7O?KRA2uVe_4o9Ptw z^R!4n3yKr`Fh@= zG#79TeKaTbl!sHBCQNsEYof-Zd2e(G-VzldUL68Uz}fn& z>|_1`wyR@juv)BuMMumfgaxA@5gTw(RXt?6Y|pgFUU;j3{&SE7v=l#BQed{M-LHd| zff*(s&8D^V+(k^0>|lo99iTUkV2PzXRm$aMKY*5AUry`t(4SiN@}L&FpW^48>@CZ& zoOtFsvDz&x^{z{s+k0tg0RSES9$nz)5@2M|*>X6TBxzU5yBASS3!Jq>_k7sXd*cSM zN6tQe-coOG8R7Via&<((V!^Rt)N%RUccPvm?a}F2DXv#Z=!V#eP^`18TuJV`Z7=bQ%lxKXoxPt%*kbBjNav@byiB1C%$w?xR`m=HU z5gG?KoqkN0FNW_=dHwR1#av#`?%@E==Zd*tyQlZAnwYW{UXG)37tP9W_&^SrsVmX1Sdeb!Dej|Lc;! zgmH_WzFSuuMx9HtC~rQJT%@M>xoKv&dBEMkqK;@=G0HF+qd}QKT1XzQrXvJk?yheZ z{hW-V#svZYn7Z6eVAZA!bbUf7Agm-$Mq&5s%ytX$Sxaf2+h$y|>^KbrkT5*&RsVHk zCsU*pSKckJA(c+EL02nY13T(o0z_k+bcR$UHJ}0;5&}nZ1x*W7Xvt> zq@`ZF)$YZf)650Q?Ps&4;5`q%X+GN)mfFBChS_%a1GwzMs5X-XvffEVZmG3=wD5}E zfxldd;Pp+JuoiD^$UcmuCV>>Zfp}Vq0U*C>mid#=#(|+31GtJn>YfzODcH0xPc$_F zcH;M3$WW^wJk=K2Zu$#b6dKgT)wR00YW^cFWxSGQ+;fq%=lNZB`nC06*G9-z1w4;# z>bex=zpp?BTG^>Cr`~Y#phYVkE~znJh-7vvtHo=fqG}$Y`VD!WY>b+LREe$551xdu zK6~}>;InccRwBi3h>nwSPX6e4j&vip z8C`8GDCT_cw!F6)(JyszH@3rBr5^z3T<<%c`G#1|MYLrp}%gHG!Dk&&S zg5^cQU{P@@SrcEBt~17kPfQmo50+B~|Gy>kNzX8e+<$&?jopI9f+2nQAKMQPtC&B2 zmbHFq<=nHT@8mxW6XRhPyyeaD-X($N>`!Qj(8Kvbvb~Mo6m*4eWk;neh^W$NOv#E% zKlT@?c1^wGgL5KKi)i=uTG1PmRrCt0P7yHWDEo)yxQVzs#AFh+wbof<`*WJ-cgAA) zZ;bC0!|ucbfuqcJLbJyA4FhJ)otj~CME+8iOs92FpA$p9q#^S@=__V9Gpz*a;LkB6 zV<|ygUjH&N^`{wLdWsZK1o_$Ya8!-M&PMZs*Ww{*CG-3$ySnuFFM=NzDvlq z%&-&JyfIcu`Q2ozUN1RHf!(pEik(4> zT|6T9K&QKwX8TG>?Kr?A9(K^yX9N+YAPRR_$Hl=U0pNKrk+rzP) z#sHQh->TVZ8xj${nbEiJcA@B4JkJsIgHOM01wpyOU2W5NM9JruPQYqv-|=2>j?p?b zTSF9^JEmdVt^AR#c?O1NiXU?w(zo(JV(A640fAZ?+EZC2{WYuZeVHdA-BZ{3eGrR{ zSiM;ln5v*_5A^3W*X5XLyZGiUy~jHg0}4+oT{n+dA<`T8IjRX3n((LA&?!HG+S(GH z2^yLguapP*;uLFC1+2swrs7%(s%zT5GK70d;Vmsh3YZWFj2x=5qSC{+cKDWtZOU6d zJ``@ejd|&$D#|)?N4uU(B%RAa*PvODpXW<7X{)FSMjH!q%(oDu^VF!yJY`tp1YS(m zN5T1xVyg^0{3))zTGIXFey@+U@+tKMs}wA{#5&2Tn4%=b#(nTEUC|wf`@csxB@VN! zbOj#VaJT1(7%{yp#if*rL8Dc5-2JgDUo)saAes0-+nZ0S|FfHQZAN0C+|s_2mRV;^ zj_DS8&!ZD%NMy+74%5@nelq(eKI)|Xk&xMf`Y>Tx zs>lXk?Ne4XrB+?A$6a`9uX|B*7eSF4>kpO4tyK;Ag_%>#{$ZqRSDa*71^6rNWa&V; zysm9VK*Mv^%XryCl0FvAcy?e}mu$bO@a~%EuO@3>6ccv4U<@`gocs!UTgMrrRlmB7 z67RHFKG@q#&!`PQJ*WDBcewibo7pLK$(J;GsuQGRu(R(p9q1H9sY5d~!pbT9$*oIt zYK`BKl(~gudK#;#SgvbsW0#*(D+!G z_yiwoI`L2w<5J9Qz8k;vE5h|s+j$A)!gY1k5I?B&d^@yL_aU9tDxUYeO*;;MSXc41-;vR>i^4K^-FiF^Et|W;aB4jwB!+ZV33&2I9Zm}daMS1pQnfn`K=ukWGj!DCGQJiYWfBd!l e4DZ=>yfUrse{Xp|OiK+`Qj(_<7S=P>r}{rV-K1>* delta 5022 zcmai1XEYp8w-wQb(V`pC2^nQZH%OEqh~CREdLK2>4Ks)uy+)1RiRjUyMi3=}C=*2V z9=+uGvfhukzCZ8R-FM%6*4cZVyVkj9;m!SDiT4xO@r0qG!pU9SJg8~7dOTAzWygN) z#=?%m)b(u(V?%21FcE|dOJ7;!w zbAeZNhr6RxdDpZD$!=D<*??*>#|$c~fQ#!tUr8ZuP500HGKrU5{?1uRbbfjv%^ck6 z=igOqh)*KN*l>e$uM>6CBC|W5Maf=PEq!VBnu82?@;P_M^bt{D1?8l0akZPar9U1=Ls1JMP*Q&SUQ!9)lHvwK zNW|L|l`q*-msujfnV-!djkI;)D+w0{@!>XUCoHqB0%x~2_xVh|`4eT}2;DL~Wb+U6 zqnO#w*QhR+c7(ep$4?_F5juBvqC-TW3mYET70I02y<;oniyAP0lNS&Sh@U?WojuPr zMa?ZCzs|q1L=9{Qb2N-N)bg_LOq7d)Rkpku6JA88Cx#gflqx|-TXShBE#oz6;lFfU zw?u<=l)`k_8S?^+SR0drb)JXGz`9O}vnzBhLLP-b)!xAKvN_4fd43|EIHR8EsLO02(ua*Sshcq?nO1O@VTC!C0B4Z zOd0|92a}%u+jb1)c_MH6=eIXUm+@ z6(?7td+=XFaHd!ne8bEd@MFg10F(V2Xl42kM+nkPzUBv7Wg{PNGp#Gp)E&SfLONEh zITUVM50FV?Uwx2!6?QL!Xbm;Mi&&RUWd|@j$<4Xs;9jKrWbh4692SVx%cz_K`@4aHnW|Zep17Dg*k z1glE0^$LE8a5B{dVPN)4RT0Kg-jU;xK|$z*Rb(hl?LP@8!rz^cv@jl-CVDdulDmA%N>A>} zyCWaZ^_;#C99%#+g;*eR;G0KVZq(xe(&0x2Ouabj7_Z8_dQWhgB~HmuYZ#rh0y*l= zul9JcCrQcwa%KwTca#U|9o1xs6YMb70(D%PQAURx$*Tt{kZ|z=1J)elfVt z6Fi@WBJ0MJG+f5Vj$@*Be85e&!|pm7 z>Ckl33LF#W4fw3en4|iMWOx&$Vo(emkqEHSm%JFJbi(yw&-Pn`SPWW=6bLztoJO~i z<$uF=Y#ki02@fnCXyTsn!G+Usq{0&uuPU7SVf;sd;(H>cdg(zr<}zIoDt8 zy?jhy7eD_~^8kVZCavAmNXG zS+F!6_v9^!H2Ydl!q#gw@spJXTs^1u8Piz0y4n4Mg1W@&W|TXbve?)tp<#Q|#xU8L zfi+H+w*ehN^9xJJjD%3s`XAQ7XY|rO=Ke->#nuBY3Y6C>*Q6YJvOkq~QzxT@BmY^LQoS zBGDK0Bez9522(h=1D6W$Y4T#tl>@!|7-wke^2NVp5?no1?RwOJN|$(ElTed6@%afE z^2xCxX6MLG1ILs|vGd^@dGcGSt-<0raB(uQs9FD{yVru_7`PXcBO^+nDJa8mSXSL|1CL(Ovn5(FM@JUl;1^d8CFO>QFph~^y z!99X&{h;qmFpZcFub>?J){L30kGkcl zbqL269a7B2fu{XB>|n0BM$^NuVPTj*WPsW%&*y2*GyG;&lmd-exiuY-uV~yb2psEL zR6}|&+j?Y`^G)Lna9=o%_u!A6}M6B^7UsYUg zr8*(~hpm>h1wfD6Ll+5J0izmpsPi;W8oA6&44EX#{4)Y7{-7v)Iu`Rz@_R}E)O}J% z(nw(?s*u>Tkb*h$((|5`;Uvk+A8nG1*uY=*qy{ z=U%O&l15V!JBo@-i;;n4Ynj53IXArfW*$X!uj`Klf@6y%vMu`B%@G0gs>E~#5wt{K zo|nzT^40~jbK1m|nCO-FnkNaeaU^BY;Tz;$ao*z3hx?3?o+u{j7ZTg*YxlanJ)HH5 z$<&CH6e)M{BPTmW4CPa$9&2Y{dbX)DvM>~{X}YHaM1N~Z(@GhIWGXsVa|FCu^>Erl z0d2;oSo`G;Ipa`95m$085olYH*HV!cSMD<6?`CC_wq=-xU(m}i?fOg7|8O#u z*cNHyG~h!X5~aIB+d$9b!*@wDQN(R3W-2Pp`s!Z$@86z|7UmGIdl*5Z%nB+ zGS&pCPz0aVZVcuVX<}bfE3OE&67i84NA~yj0mrIh2akZDQ|!K>jJ0$Vw5L7MU7clG z|3qKk(5H~WK8?2rmueE)lUbKlKndwi5q=@GCaIfGQ20WvpL6h$cae=rVQGeTsLE(8 zfmBP&@e7kcjLoF5<#QZPsYtCP8)Ig!YFpsS?RFp4TdTPy|6GMKs_K z*8qN%KJ6+QyYyw<*QB|+@kDopw5&G=6#bTE-G;q7*MRp%%ayk4qoA}u#-3(@yhffw z1hj7?>{SG7Yv$&gGxj(wZZqxpB-NCSA4&3X>x-4E{*J0m&bGJpcnY%P3PjNmYP^3d zy(q{$8zPKmZKthC(D5F9Nhoh;H2SQgEwO9d-|r-D7uF)QQDd2Wb$EX1$Zf7>W@UNz z5gfUk^3Gt>NIc`Ku5b~PJFq(2D1hx5I;OIfh>WZFclQnv%19VQ5(IkNFNR?iIjWSQ z)5jia0>~dJ{Oa?%&&mLWNvH;6=#D)Ns5_~bS*_ECoW^+vPBD<4D#u?0DIrrpe6?d|CU|Wuh`YFr@VPplM3`$zp^1$@Tp;!D$3f_?@fMwdA54vany$J7gU=QJV2%C;Un#BQc#c z@4$?goR!`s%V8F91(}Z^M%4>sY$&<2iPy6-olm8tt_;S`UOl~6-;It+i=In7YAa(G z@+8*Op^)5|_`v_7s3{FYj0oD$`Q)j=my{fW0K8xo{umkIq#WZbLXL~b6`8;TFa}nu zvdL7P!PZ{OHRph96&h_*n#zrjq;|6d57~T&!!YK1VqSf(yoE7DcZCVX+ z^(rYa8kUE!1ag_d=k83|x!@#SYx$Fxp}(`E0?}e`53{6ED^b0^(Q@N$heRJ4Z729# zHB>){!F?46B|ug6-jB62wY059h+NhA2yDts zdQcasTqOrbshtk9<&cPl9JA(hemR;T_wG6jwr&b&~PaG>d=v0kXY0`DxUo+x>U;VnE$@tQ-G%?N4o&6DuN1*IV8sYqx1hORw zX%8!iShXREd*CX9O?Es=5WGh`kMmurdfCiKPZD6lBdF9H6?TxwA+?1y#Q?b>?L^;SX7I;1nsO+Hya{EPJMReONud zva3|&^*>;2AkB&ou+YT9an=7i>DnYTw)Z?>Hp^y$3;*`T+3PCK{0*WkZZJOdQWE~$ zLci9F^3K*kCbb88S_l*@REPz(pC8=*jGwtN@6tT+xv%l&rpWy@-H*a5uL<18YY(*0 zr|52m&iZe*pIvqGWm8ld@wTIgJwzC2#V>5|QZII0Bh)0}%YBza3Vm2<|VR~>s) z8D4)oqT!5T?PpU$G0mHe9Ei{1e<-5K!_A+7QD7lv!wHQeUe}kmBW@KeTry?3v4dW1 zhTzlp$bQ3@YKxO`i;Y^yX2VV$xS{tK{YCWKCQl^Y@Wtt{;qY>_=Z#KjOkKy;+EL@X zxhIvGlYV4BTx$Iqzg2CRtBEe@sGGXfn7GyY2mKWU&jiXWS@F)993nlfJNY-KyX+`r zP~B?&q1Y*sw&cJOx8dK~*DZ48B9;f!me7TM1s{Xm@h+ha$xEl`HF$lmdLPW-}E; z1AG6?CxpV;rM{Oqz$IZd] (\x,\y) -- (\x+0.9,\y); - \draw[->] (\x,\y) -- (\x,\y+0.9); + \foreach \y in {1,...,\height} { + \draw[->] (\x,\y-1) -- (\x+0.9,\y-1); + \draw[->] (\x,\y-1) -- (\x,\y-1+0.9); } - \draw [->] (\x,6) -- (\x+0.9,6); + \draw [->] (\x,\height) -- (\x+0.9,\height); } - \foreach \y in {0,...,5} - \draw [->] (8,\y) -- (8,\y+0.9); - + \foreach \y in {1,...,\height} %somehow the loop cant go to '\height-1' + \draw [->] (8,\y-1) -- (8,\y-1+0.9); % so we fix it like this with '\y-1' \draw(-0.1,-0.4) node {$b_1\land b_2$}; \draw(8,-0.4) node {$\mathbf{1} \land b_2$}; - \draw (-0.2,6.3) node {$b_1\land\mathbf{1}$}; - \draw (8.2,6.3) node {$\mathbf{1}$}; + \draw (-0.2,\height+0.3) node {$b_1\land\mathbf{1}$}; + \draw (8.2,\height+0.3) node {$\mathbf{1}$}; \draw (4,-0.5) node {$\to$ steps of $\xi_1$}; - \node[rotate=90,anchor=south,xshift=3cm,yshift=0.5cm] {$\to$ steps of $\xi_2$}; + \node[rotate=90,anchor=south,xshift=2cm,yshift=0.5cm] {$\to$ steps of $\xi_2$}; \draw[fill,red] (0,0) circle (0.08); \draw[fill,red] (8,0) circle (0.05); - \draw[fill,red] (0,6) circle (0.05); - \draw[fill,red] (8,6) circle (0.08); + \draw[fill,red] (0,\height) circle (0.05); + \draw[fill,red] (8,\height) circle (0.08); - \def\x{5}; + \def\x{6}; \def\y{3}; \draw[fill,black] (\x,\y) circle (0.07); \draw[fill=white,draw=black] (\x+0.25,\y-0.26) rectangle +(0.5,0.5); @@ -49,7 +49,7 @@ \draw (\x,\y+0.5) node {$1-p_j$}; \def\x{2}; - \def\y{2}; + \def\y{1}; \draw[fill,black] (\x,\y) circle (0.07); \draw[fill=white,draw=black] (\x+0.25,\y-0.26) rectangle +(0.5,0.5); \draw[fill=white,draw=black] (\x-0.50,\y+0.26) rectangle +(1.0,0.5); @@ -63,7 +63,7 @@ \draw (\x,\y+0.5) node {$1$}; \def\x{3}; - \def\y{6}; + \def\y{\height}; \draw[fill,black] (\x,\y) circle (0.07); \draw[fill=white,draw=black] (\x+0.25,\y-0.25) rectangle +(0.5,0.5); \draw (\x+0.5,\y) node {$1$}; diff --git a/main.tex b/main.tex index 82cc4e04920521810f3d8d73731453a4e9838366..87583670fa2c6e5c3d4e6a6c622d73584bcd89a7 100644 --- a/main.tex +++ b/main.tex @@ -57,7 +57,8 @@ \newcommand{\diam}[1]{\mathcal{D}\left(#1\right)} \newcommand{\paths}[1]{\mathcal{P}\left(#1\to\mathbf{1}\right)} -\newcommand{\gapsum}[1]{\mathrm{gapsum}\left(#1\right)} +\newcommand{\maxgap}[1]{\mathrm{maxgap}\left(#1\right)} +\newcommand{\gaps}[1]{#1_{\mathrm{gaps}}} \long\def\ignore#1{} @@ -220,21 +221,21 @@ \section{Quasiprobability method} Let us first introduce notation for paths of the Markov Chain \begin{definition}[Paths] - We define a \emph{path} of the Markov Chain as a sequence of states and resampling choices $\xi=((b_0,r_0),(b_1,r_1),...,(b_k,r_k)) \in (\{0,1\}^n\times[n])^k$ indicating that at time $t$ Markov Chain was in state $b_t\in\{0,1\}^n$ and then resampled site $r_t$. We denote by $|\xi|$ the length of such a path, i.e. the number of resamples that happened, and by $\mathbb{P}[\xi]$ the probability associated to this path. - We denote by $\paths{b}$ the set of all valid paths $\xi$ that start in state $b$ and end in state $\mathbf{1}$. + We define a \emph{path} of the Markov Chain as a sequence of states and resampling choices $\xi=((b_0,r_0),(b_1,r_1),...,(b_k,r_k)) \in (\{0,1\}^n\times[n])^k$ indicating that at time $t$ Markov Chain was in state $b_t\in\{0,1\}^n$ and then resampled site $r_t$. We denote by $|\xi|$ the length $k$ of such a path, i.e. the number of resamples that happened, and by $\mathbb{P}[\xi]$ the probability associated to this path. + We denote by $\paths{b}$ the set of all valid paths $\xi$ that start in state $b$ and end in state $\mathbf{1} := 1^n$. \end{definition} We can write the expected number of resamplings per site $R^{(n)}(p)$ as \begin{align} - R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1\}^{n}} \rho_b \; R_b(p) \label{eq:originalsum} + R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1\}^{n}} \rho_b \; R_b(p) \label{eq:originalsum} , \end{align} where $R_b(p)$ is the expected number of resamplings when starting from configuration $b$ \begin{align*} - R_b(p) &= \sum_{\xi \in \paths{b}} \mathbb{P}[\xi] \cdot |\xi| + R_b(p) &= \sum_{\xi \in \paths{b}} \mathbb{P}[\xi] \cdot |\xi| . \end{align*} -We consider $R^{(n)}(p)$ as a power series in $p$ and show that many terms in (\ref{eq:originalsum}) cancel out if we only consider the series up to some finite order $p^k$. Note that if a path samples a $0$ then $\mathbb{P}[\xi]$ gains a factor $p$.\\ +We consider $R^{(n)}(p)$ as a power series in $p$ and show that many terms in (\ref{eq:originalsum}) cancel out if we only consider the series up to some finite order $p^k$. The main idea is that if a path samples a $0$ then $\mathbb{P}[\xi]$ gains a factor $p$ so paths that contribute to $p^k$ can't be arbitrarily long.\\ -To see this, we split the sum in (\ref{eq:originalsum}) into parts that will later cancel out. The initial probabilities $\rho_b$ contain a factor $p$ for every $0$ and a factor $(1-p)$ for every $1$. When expanding this product of $p$s and $(1-p)$s, we see that the $1$s contribute a factor $1$ and a factor $(-p)$ and the $0$s only give a factor $p$. Therefore we no longer consider bitstrings $b\in\{0,1\}^n$ but bitstrings $b\in\{0,1,1'\}^n$. We view this as follows: every site can have one of $\{0,1,1'\}$ with `probabilities' $p$, $1$ and $-p$ respectively. A configuration $b=101'1'101'$ now has probability $\rho_{b} = 1\cdot p\cdot(-p)\cdot(-p)\cdot 1\cdot p\cdot(-p) = -p^5$ in the starting state $\rho$. It should not be hard to see that we have +To see this, we split the sum in (\ref{eq:originalsum}) into parts that will later cancel out. The initial probabilities $\rho_b$ contain a factor $p$ for every $0$ and a factor $(1-p)$ for every $1$. When expanding this product of $p$s and $(1-p)$s, we see that the $1$s contribute a factor $1$ and a factor $(-p)$ and the $0$s only give a factor $p$. We want to expand this product explicitly and therefore we no longer consider bitstrings $b\in\{0,1\}^n$ but bitstrings $b\in\{0,1,1'\}^n$. We view this as follows: every site can have one of $\{0,1,1'\}$ with `probabilities' $p$, $1$ and $-p$ respectively. A configuration $b=101'1'101'$ now has probability $\rho_{b} = 1\cdot p\cdot(-p)\cdot(-p)\cdot 1\cdot p\cdot(-p) = -p^5$ in the starting state $\rho$. It should not be hard to see that we have \begin{align*} R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_{b} \; R_{\bar{b}}(p) , \end{align*} @@ -248,15 +249,14 @@ We can further rewrite the sum over $b\in\{0,1,1'\}^n$ as a sum over all slot co \end{align*} where $C(f)\in\{0,1,1'\}^n$ denotes a configuration with slots on the sites $C$ filled with (anti)particles described by $f$. The non-slot positions are filled with $1$s. -\begin{definition}[Diameter] - For a slot configuration $C\subseteq[n]$, we define the diameter $\diam{C}$ to be the minimum size of an interval containing $C$ where the interval is also considered modulo $n$. In other words $\diam{C} = n - \max\{ j \vert \exists i : [i,i+j-1]\cap C = \emptyset \}$. Figure \ref{fig:diametergap} shows the diameter in a picture. +\begin{definition}[Diameter and gaps] \label{def:diameter} \label{def:gaps} + For a subset $C\subseteq[n]$, we define the \emph{diameter} $\diam{C}$ to be the minimum size of an interval $I$ containing $C$. Here we consider both $C$ and the interval modulo $n$. In other words $\diam{C} = \min\{ j \vert \exists i : C\subseteq [i,i+j-1] \}$. We define the \emph{gaps} of $C$, as $I\setminus C$ and denote this by $\gaps{C}$. Note that $\diam{C} = |C| + |\gaps{C}|$. Define $\maxgap{C}$ as the size of the largest connected component of $\gaps{C}$. Figure \ref{fig:diametergap} illustrates these concepts with a picture. \end{definition} - \begin{figure} \begin{center} \includegraphics{diagram_gap.pdf} \end{center} - \caption{\label{fig:diametergap} A configuration $C=\{1,2,4,7,9\}\subseteq[n]$ consisting of 5 slots shown by the red dots. The blue squares denote the set $C_{><}$ which is all elements of $[n]\setminus C$ that lie within the interval spanned by $C$. The dotted line at the top depicts the rest of the circle which may be much larger. The diameter of this configuration is $\diam{C} = |C| + |C_{><}| =9$ as shown. The largest gap of $C$ is $\mathrm{gap}(C)=2$ which is the largest connected component of $C_{><}$. Note that we do not count the rest of the circle as a gap, we only consider gaps \emph{within} the diameter of $C$.} + \caption{\label{fig:diametergap} Illustration of Definition \ref{def:diameter}. A set $C=\{1,2,4,7,9\}\subseteq[n]$ consisting of 5 positions is shown by the red dots. The smallest interval containing $C$ is $[1,9]$, so the diameter is $\diam{C}=9$. The blue squares denote the set $\gaps{C} = \{3,5,6,8\}$. The dotted line at the top depicts the rest of the circle which may be much larger. The largest gap of $C$ is $\maxgap{C}=2$ which is the largest connected component of $\gaps{C}$.} \end{figure} \begin{claim}[Strong cancellation claim] \label{claim:strongcancel} @@ -283,13 +283,14 @@ A weaker version of the claim is that if $C$ contains a gap of size $k$, then th \begin{align*} \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)} , \end{align*} - is at least $p^{|C|+\mathrm{gap}(C)}$ when $n$ is large enough. Here $\mathrm{gap}(C)$ is defined as in Figure \ref{fig:diametergap}, its the size of the largest gap of $C$ within the diameter of $C$. All lower order terms cancel out. + is at least $p^{|C|+\maxgap{C}}$ when $n$ is large enough. All lower order terms cancel out. \end{claim} This weaker version would imply \ref{it:const} but for $\mathcal{O}(k^2)$ as opposed to $k+1$. \newpage -The reason that claim \ref{claim:strongcancel} would prove \ref{it:const} is the following: -For a starting configuration that \emph{does} give a nonzero contribution, you can take that same starting configuration and translate it to get $n$ other configurations that give the same contribution. Therefore the coefficient in the expected number of resamplings is a multiple of $n$ which Andr\'as already divided out in the definition of $R^{(n)}(p)$. To show \ref{it:const} we argue that this is the \emph{only} dependency on $n$. This is because there are only finitely many (depending on $k$ but not on $n$) configurations where the $k$ slots are nearby regardless of the value of $n$. So there are only finitely many nonzero contributions after translation symmetry was taken out. For example, when considering all starting configurations with 5 slots one might think there are $\binom{n}{5}$ configurations to consider which would be a dependency on $n$ (more than only the translation symmetry). But since most of these configurations have a diameter larger than $k$, they do not contribute to $a_k$. Only finitely many do and that does not depend on $n$. +The reason that claim \ref{claim:strongcancel} would prove \ref{it:const} is the following: to know the value of $a_k^{(n)}$, for any $n\geq k+1$ it is enough to look at configurations $C$ with diameter at most $k$, since larger configurations do not contribute to $a_k^{(n)}$. +For a starting state $b\in\{0,1\}^n$ that \emph{does} give a nonzero contribution, you can take that same starting configuration and translate it to get $n$ other configurations that give the same contribution. (An exception is a starting state like $1010101010...$ which you can only translate twice, but we only have to consider configurations with small diameter, in which case you can make exactly $n$ translations.) +Therefore the coefficient in the expected number of resamplings is a multiple of $n$ which Andr\'as already divided out in the definition of $R^{(n)}(p)$. To show \ref{it:const} we argue that this is the \emph{only} dependency on $n$. This is because there are only finitely many (depending on $k$ but not on $n$) configurations where the $k$ slots are nearby regardless of the value of $n$. So there are only finitely many nonzero contributions after translation symmetry was taken out. For example, when considering all starting configurations with 5 slots one might think there are $\binom{n}{5}$ configurations to consider which would be a dependency on $n$ (more than only the translation symmetry). But since most of these configurations have a diameter larger than $k$, they do not contribute to $a_k$. Only finitely many do and that does not depend on $n$. ~ @@ -330,13 +331,14 @@ With this we can write a recursive formula for the expected number of resamples &\quad+ 73555.2 p^{18} + 123053 p^{19} + 205290 p^{20} + 341620 p^{21} + 567161 p^{22} \\ &\quad+ 939693 p^{23} + 1.5537\cdot10^{6} p^{24} + 2.56158\cdot10^{6} p^{25} + \mathcal{O}(p^{26}) \end{align*} -where the recursion steps were done with a computer. This assumes $n$ to be much larger than the largest power of $p$ considered. +where the recursion steps were done with a computer for an infinite line (or a cirlce where $n$ is assumed to be much larger than the largest power of $p$ considered). -Note: in the first line at the second term it uses that with probability $(3p-6p^2)$ the state goes to $\framebox{$101$}$ and then the expected number of resamplings is $1+R_{101}$. I (Tom) believe this requires the assumption $p_\mathrm{tot} := \sum_{\xi\in\paths{b}} \mathbb{P}[\xi] = 1$. To see why this is required, note that the actual term in the recursive formula should be $$(3p-6p^2)\cdot\left( \sum_{\xi\in\paths{101}} \mathbb{P}[\xi] \cdot \left( 1 + |\xi|\right) \right) = (3p-6p^2)\left( p_\mathrm{tot} + R_{101} \right)$$ -When there would be a non-zero probability of never stopping the resample process then $p_\mathrm{tot}$ (the probability of ever reaching $\mathbf{1}$) could be less than one. Therefore I assume that $R^{(n)}(p)$ is finite which implies that the probability of ever reaching $\mathbf{1}$ is 1. +Note: in the first line at the second term it uses that with probability $(3p-6p^2 + 3p^3)$ the state goes to $\framebox{$101$}$ and then the expected number of resamplings is $1+R_{101}$. Note that the actual term in the recursive formula should be +$$(3p-6p^2+3p^3)\cdot\left( \sum_{\xi\in\paths{101}} \mathbb{P}[\xi] \cdot \left( 1 + |\xi|\right) \right) = (3p-6p^2+3p^3)\left( p_\mathrm{tot} + R_{101} \right)$$ +where $p_\mathrm{tot} := \sum_{\xi\in\paths{b}} \mathbb{P}[\xi]$. However, since the state space is finite (for finite $n$) and there is always a non-vanishing probability to go to $\mathbf{1}$, we know that $p_\mathrm{tot}=1$, i.e. the process terminates almost surely. \newpage -\subsection{Cancellation of gapped configurations} +\subsection{Weak cancellation proof} Here we prove claim \ref{claim:weakcancel}, the weaker version of the claim. We require the following definition \begin{definition}[Path independence] \label{def:independence} @@ -360,11 +362,11 @@ and indeed the sums agree up to order $p^{k-1}=p^2$. When going up to order $p^{ ~ \begin{proof} -Consider a path $\xi_1\in\paths{b_1}$ and a path $\xi_2\in\paths{b_2}$ such that $\xi_1$ and $\xi_2$ are independent (Definition \ref{def:independence}). The paths $\xi_1,\xi_2$ induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ different paths of total length $|\xi_1|+|\xi_2|$ in $\paths{b_1\land b_2}$. In the sums $R_{b_1}$ and $R_{b_2}$, the contribution of these paths are $\mathbb{P}[\xi_1]\cdot |\xi_1|$ and $\mathbb{P}[\xi_2]\cdot |\xi_2|$. The next diagram shows how these $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths contribute to $R_{b_1\land b_2}$. At every step one has to choose between doing a step of $\xi_1$ or a step of $\xi_2$. The number of zeroes in the current state determine the probabilities with which this happens (beside the probabilities associated to the two original paths already). The grid below shows that at every point one can choose to do a step of $\xi_1$ with probability $p_i$ or a step of $\xi_2$ with probability $1-p_i$. These $p_i$ could in principle be different at every point in this grid. + Consider a path $\xi_1\in\paths{b_1}$ and a path $\xi_2\in\paths{b_2}$ such that $\xi_1$ and $\xi_2$ are independent (Definition \ref{def:independence} or \ref{def:independence2}). The paths $\xi_1,\xi_2$ induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ different paths of total length $|\xi_1|+|\xi_2|$ in $\paths{b_1\land b_2}$. In the sums $R_{b_1}$ and $R_{b_2}$, the contribution of these paths are $\mathbb{P}[\xi_1]\cdot |\xi_1|$ and $\mathbb{P}[\xi_2]\cdot |\xi_2|$. The next diagram shows how these $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths contribute to $R_{b_1\land b_2}$. Point $(i,j)$ in the grid indicates that $i$ steps of $\xi_1$ have been done and $j$ steps of $\xi_2$ have been done. At every point (except the top and right edges of the grid) one has to choose between doing a step of $\xi_1$ or a step of $\xi_2$. The number of zeroes in the current state determine the probabilities with which this happens (beside the probabilities associated to the two original paths already). The grid below shows that at a certain point one can choose to do a step of $\xi_1$ with probability $p_i$ or a step of $\xi_2$ with probability $1-p_i$. These $p_i$ could in principle be different at every point in this grid. The weight of such a new path $\xi\in\paths{b_1\land b_2}$ is $p_\mathrm{grid}\cdot\mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]$ where $p_\mathrm{grid}$ is the weight of the path in the diagram. By induction one can show that the sum over the $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ different terms $p_\mathrm{grid}$ is $1$. \begin{center} \includegraphics{diagram_paths.pdf} \end{center} -The weight of such a new path is the weight of the path in the diagram, multiplied by $\mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]$. By induction one can show that the sum over all $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths in the grid is $1$. Hence the contribution of all $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths together to $R_{b_1\land b_2}$ is given by + Hence the contribution of all $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths together to $R_{b_1\land b_2}$ is given by \[ \mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]\cdot(|\xi_1|+|\xi_2|) = \mathbb{P}[\xi_2]\cdot\mathbb{P}[\xi_1]\cdot|\xi_1| \;\; + \;\; \mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]\cdot|\xi_2|. \] @@ -400,18 +402,27 @@ we can do the same with the second term and this proves the claim. \end{align*} where we used the identity $\sum_{a\in\{0,1\}^l} (-1)^{|a|} = 0$. -~ - -It is useful to introduce some new notation: for any event $A$ (where an event is a set of paths), define -\begin{align*} - \mathbb{P}_b(A) &= \mathbb{P}(A \;|\; \text{start in }b) \\ - R_{b,A} &= \mathbb{E}( \#resamples \;|\; A\;,\; \text{start in }b) -\end{align*} -Denote by $\mathrm{Z}_j$ the event that site $j$ becomes zero at any point in time before the Markov Chain terminates. Denote the complement by $\mathrm{NZ}_j$, i.e. the event that site $j$ does \emph{not} become zero before it terminates. - -The proof of claim \ref{claim:expectationsum} also proves the following claim -\begin{claim}[Conditional independence] \label{claim:eventindependence} - As in \ref{claim:expectationsum}, let $b=b_1\land b_2\in\{0,1\}^n$ be a state with two groups ($b_1\lor b_2 = 1^n$) of zeroes. Let $j_1$, $j_2$ be indices `inbetween' the groups (or only one index in case of the infinite line). Then we have +\newpage +\subsection{Proving the strong cancellation claim} +It is useful to introduce some new notation: +\begin{definition}[Events conditioned on starting state] \label{def:conditionedevents} + For any state $b\in\{0,1\}^n$ and any event $A$ (where an event is a subset of all possible paths of the Markov Chain), define + \begin{align*} + \mathbb{P}_b(A) &= \mathbb{P}(A \;|\; \text{start in }b) \\ + R_{b,A} &= \mathbb{E}( \#resamples \;|\; A \; \& \; \text{start in }b) + \end{align*} +\end{definition} +\begin{definition}[Vertex visiting event] \label{def:visitingResamplings} + Denote by $\mathrm{Z}^{(j)}$ the event that site $j$ becomes zero at any point in time before the Markov Chain terminates. Denote the complement by $\mathrm{NZ}^{(j)}$, i.e. the event that site $j$ does \emph{not} become zero before it terminates. +\end{definition} +\begin{figure} + \begin{center} + \includegraphics{diagram_groups.pdf} + \end{center} + \caption{\label{fig:separatedgroups} Illustration of setup of Lemma \ref{lemma:eventindependence}. Here $b_1,b_2\in\{0,1\}^n$ are bitstrings such that all zeroes of $b_1$ and all zeroes of $b_2$ are separated by two indices $j_1,j_2$.} +\end{figure} +\begin{lemma}[Conditional independence] \label{lemma:eventindependence} \label{claim:eventindependence} + Let $b=b_1\land b_2\in\{0,1\}^n$ be a state with two groups ($b_1\lor b_2 = 1^n$) of zeroes that are separated as in Figure \ref{fig:separatedgroups}. Let $j_1$, $j_2$ be any indices `inbetween' the groups as shown in the figure. Then we have \begin{align*} \mathbb{P}_b(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2}) &= @@ -425,11 +436,13 @@ The proof of claim \ref{claim:expectationsum} also proves the following claim R_{b_2,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2}} \end{align*} up to any order in $p$. -\end{claim} +\end{lemma} +The lemma says that conditioned on $j_1$ and $j_2$ not being crossed, the two halves of the circle are independent. + \begin{proof} For clarity we do the proof for the infinite line, when there is only one index. Simply replace $\mathrm{NZ}_j$ by $\mathrm{NZ}_{j_1}\cap\mathrm{NZ}_{j_2}$ for the case of the circle. - Note that any path $\xi\in\paths{b} \cap \mathrm{NZ}_j$ can be split into paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}_j$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}_j$ and by the same reasoning as in the proof of claim \ref{claim:expectationsum}, we obtain + Note that any path $\xi\in\paths{b} \cap \mathrm{NZ}_j$ can be split into paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}_j$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}_j$. This can be done by taking all resampling positions $r_i$ in $\xi$ and if its ``on the $b_1$ side of $j_1,j_2$'' then add it to $\xi_1$ and if its ``on the $b_2$ side of $j_1,j_2$'' then add it to $\xi_2$. Vice versa, all paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}_j$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}_j$ also induce a path $\xi\in\paths{b} \cap \mathrm{NZ}_j$ by simply concatenating the resampling positions. By the same reasoning as in the proof of claim \ref{claim:expectationsum}, we obtain \begin{align*} \mathbb{P}_b(\mathrm{NZ}_j) = \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}_j}} \mathbb{P}[\xi] @@ -456,8 +469,7 @@ The proof of claim \ref{claim:expectationsum} also proves the following claim Dividing by $\mathbb{P}_b(\mathrm{NZ}_j)$ and using the first equality gives the desired result. \end{proof} -~ - +\begin{comment} TEST: Although a proof of claim \ref{claim:expectationsum} was already given, I'm trying to prove it in an alternate way using claim \ref{claim:eventindependence}. ~ @@ -505,49 +517,44 @@ Now observe that + \mathcal{O}(p^k) \\ &\overset{???}{=} R_{b_1} + R_{b_2} + \mathcal{O}(p^k) \end{align*} +\end{comment} -\newpage - \subsection{Attempt to prove the linear bound \ref{it:const}} - Consider the chain (instead of the cycle) for simplicity with vertices identified by $\mathbb{Z}$. \begin{definition}[Starting state dependent probability distribution.] Let $I\subset\mathbb{Z}$ be a finite set of vertices. - Let $b_I$ be the initial state where everything is $1$, apart from the vertices corresponding to $I$, which are set $0$. For an event $A$ representing a subset of all possible resample sequences let $P_I(A)$ denote the probability of seeing a resample sequence from $A$ when the whole procedure started in state $b_I$. -\end{definition} -\begin{definition}[Vertex visiting resamplings]\label{def:visitingResamplings} - Let $V^{(i)}$ be the event corresponding to ``Vertex $i$ gets resampled to $0$ before termination''. + Let $b_I$ be the initial state where everything is $1$, apart from the vertices corresponding to $I$, which are set $0$. Define $P_I(A)=P_{b_I}(A)$ where the latter is defined in Definition \ref{def:conditionedevents}, i.e. the probability of seeing a resample sequence from $A$ when the whole procedure started in state $b_I$. \end{definition} The intuition of the following lemma is that the far right can only affect the zero vertex if there is an interaction chain forming, which means that every vertex should get resampled to $0$ at least once. \begin{lemma}\label{lemma:probIndep} Suppose we have a finite set $I\subset\mathbb{N}_+$ of vertices. Let $I_{\max}:=\max(I)$ and $I':=I\setminus\{I_{\max}\}$, and similarly let $I_{\min}:=\min(I)$. - Then $P_{I}(V^{(0)})=P_{I'}(V^{(0)}) + O(p^{I_{\max}+1-|I|})$. + Then $P_{I}(Z^{(0)})=P_{I'}(Z^{(0)}) + O(p^{I_{\max}+1-|I|})$. \end{lemma} \begin{proof} - The proof uses induction on $|I|$. For $|I|=1$ the statement is easy, since every resample sequence that resamples the $0$ vertex must produce at least $I_{\max}$ number of $0$-s during the resamplings. + The proof uses induction on $|I|$. For $|I|=1$ the statement is easy, since every resample sequence that resamples vertex $0$ to zero must produce at least $I_{\max}$ zeroes in-between. - Induction step: For an event $A$ and $k>0$ let us denote by $A_k=A\cap$``Each vertex in $0,1,2,\ldots, k-1$ gets $0$ before termination (either by resampling or initialisation), but not $k$''. Observe that $V^{(0)}=\dot{\bigcup}_{k=1}^{\infty}V^{(0)}_k$. - Let $I_{k}:=I\setminus[k]$, finally let $I_{><}:=\{I_{\min}+1,I_{\max}-1]\}\setminus I$ as shown in Figure \ref{fig:diametergap}. Suppose we proved the claim up to $|I|-1$, then the induction step can be shown by + Induction step: For an event $A$ and $k>0$ let us denote $A_k = A\cap\left(\cap_{j=0}^{k-1} \mathrm{Z}^{(j)}\right)\cap \mathrm{NZ}^{(k)}$, i.e. $A_k$ is the event $A$ \emph{and} ``Each vertex in $0,1,2,\ldots, k-1$ becomes $0$ at some point before termination (either by resampling or initialisation), but vertex $k$ does not''. Observe that these events form a partition, so $Z^{(0)}=\dot{\bigcup}_{k=1}^{\infty}Z^{(0)}_k$. + Let $I_{k}:=I\setminus[1,k]$, finally let $I_{><}:=\{I_{\min}+1,I_{\max}-1]\}\setminus I$ (note that $I_{><} = \gaps{I}$ as shown in Figure \ref{fig:diametergap}). Suppose we have proven the claim up to $|I|-1$, then the induction step can be shown by \begin{align*} - P_{I}(V^{(0)}) - &=\sum_{k=1}^{\infty}P(V^{(0)}_k) - =\sum_{k\in \mathbb{N}\setminus I}P(V^{(0)}_k)\\ - &=\sum_{k\in\mathbb{N}\setminus I}P_{I_{k}}(\overline{V^{(k)}}) \tag{by Claim~\ref{claim:eventindependence}}\\ - &=\sum_{k\in I_{><}}P_{I_{k}}(\overline{V^{(k)}})+\mathcal{O}(p^{I_{\max}+1-|I|}) - \tag{$k<}}P_{I'_{k}}(\overline{V^{(k)}})+\mathcal{O}(p^{I_{\max}+1-|I|}) + P_{I}(Z^{(0)}) + &=\sum_{k=1}^{\infty}P(Z^{(0)}_k) \tag{the events are a partition}\\ + &=\sum_{k\in \mathbb{N}\setminus I}P(Z^{(0)}_k) \tag{$\mathbb{P}(A_k)=0$ for $k\in I$}\\ + &=\sum_{k\in\mathbb{N}\setminus I}P_{I_{k}}(\mathrm{NZ}^{(k)}) \tag{by Claim~\ref{claim:eventindependence}}\\ + &=\sum_{k\in I_{><}}P_{I_{k}}(\mathrm{NZ}^{(k)})+\mathcal{O}(p^{I_{\max}+1-|I|}) + \tag{$k<}}P_{I'_{k}}(\mathrm{NZ}^{(k)})+\mathcal{O}(p^{I_{\max}+1-|I|}) \tag{$k< I_{\max}\Rightarrow I_{<}}P_{I'_{k}}(\overline{V^{(k)}})+\mathcal{O}(p^{I_{\max}-k+1-|I_{>k}|})\right) +\mathcal{O}(p^{I_{\max}+1-|I|}) \tag{by induction, since for $k>I_{\min}$ we have $|I_{<}}P_{I'_{k}}(\overline{V^{(k)}}) +\mathcal{O}(p^{I_{\max}+1-|I|}) - \tag{as $P_{I'_{k}}(\overline{V^{(k)}}) +\mathcal{O}(p^{I_{\max}+1-|I|})\\ - &=\sum_{k\in\mathbb{N}\setminus I'}P_{I'_{k}}(\overline{V^{(k)}}) +\mathcal{O}(p^{I_{\max}+1-|I|}) \tag{$k=I_{\max}\Rightarrow P_{I'_{<}}P_{I'_{k}}(\mathrm{NZ}^{(k)})+\mathcal{O}(p^{I_{\max}-k+1-|I_{>k}|})\right) +\mathcal{O}(p^{I_{\max}+1-|I|}) \tag{by induction, since for $k>I_{\min}$ we have $|I_{<}}P_{I'_{k}}(\mathrm{NZ}^{(k)}) +\mathcal{O}(p^{I_{\max}+1-|I|}) + \tag{as $P_{I'_{k}}(\mathrm{NZ}^{(k)}) +\mathcal{O}(p^{I_{\max}+1-|I|})\\ + &=\sum_{k\in\mathbb{N}\setminus I'}P_{I'_{k}}(\mathrm{NZ}^{(k)}) +\mathcal{O}(p^{I_{\max}+1-|I|}) \tag{$k=I_{\max}\Rightarrow P_{I'_{<}|}) \\