From 231f5e36681842e966fb1f869fa2b3b31739bec2 2017-09-06 15:22:19 From: András Gilyén Date: 2017-09-06 15:22:19 Subject: [PATCH] Update on Overleaf. --- diff --git a/main.tex b/main.tex index 2c1d611a06586de104dbf85fd91e513423ea577b..90cd09fe22be9c748fb4eeaf9dfa30c7beed2255 100644 --- a/main.tex +++ b/main.tex @@ -887,10 +887,10 @@ Note by Tom: So $A^{(\mathcal{P})}$ is the event that the set of all patches is \end{itemize} \begin{lemma}On the infinite chain - $$\P_I(Z^{0}\cap Z^{k})=\P_I(Z^{0})\P_I(Z^{k})+\mathcal{O}(p^{k-|b|+1})$$ + $$\P_I(Z^{0}\cap Z^{k})=\P_I(Z^{0})\P_I(Z^{k})+\mathcal{O}(p^{k-|I|+1})$$ \end{lemma} Note that using De Morgan's law and the inclusion-exclusion formula we can see that this is equivalent to saying: - $$\P_I(NZ^{0}\cap NZ^{k})=\P_I(NZ^{0})\P_I(NZ^{k})+\mathcal{O}(p^{k-|b|+1})$$ + $$\P_I(NZ^{0}\cap NZ^{k})=\P_I(NZ^{0})\P_I(NZ^{k})+\mathcal{O}(p^{k-|I|+1})$$ \begin{proof} We proceed by induction on $|I|$. For $|I|=0,1$ the statement is trivial.