From 330b6c1a98875e38436615dee677470562ee963c 2017-09-07 18:50:44 From: Andras Gilyen Date: 2017-09-07 18:50:44 Subject: [PATCH] nicer proof --- diff --git a/main.tex b/main.tex index aa1c6dc8c92d6e7c91986b2a82640340e5b08cca..69c2c4865b04f01e3b27b2e2833a3ff70771d9d6 100644 --- a/main.tex +++ b/main.tex @@ -596,6 +596,15 @@ The lemma says that conditioned on $v$ and $w$ not being crossed, the two halves where there is no longer a condition on the starting state. \end{lemma} + Some notation: let $P$ be an interval $[a,b]$. We say $P$ is a \emph{patch} when the $\Z{i}$ event holds for all $i \in [a,b]$ and $\NZ{a-1}$ and $\NZ{b+1}$ holds. We denote this event by $P\in\mathcal{P}$, so + \begin{align*} + P\in\mathcal{P} \equiv \NZ{a-1} \cap \Z{a} \cap \Z{a+1} \cap \cdots \cap \Z{b-1} \cap \Z{b} \cap \NZ{b+1} . + \end{align*} + Note that we have the following partition of the event $\Z{v}$ for any vertex $v\in[n]$: + \begin{align*} + \Z{v} = \dot\bigcup_{P : v\in P} (P\in\mathcal{P}) + \end{align*} + The intuition of the following lemma is that the far right can only affect the zero vertex if there is an interaction chain forming, which means that every vertex should get resampled to $0$ at least once. \begin{lemma}\label{lemma:probIndepNew} $\forall n\in \mathbb{N}_+:\P^{[n]}(\Z{1})-\P^{[n+1]}(\Z{1}) = \bigO{p^{n}}$. (Should be true with $\bigO{p^{n+1}}$ as well.) @@ -676,34 +685,44 @@ The intuition of the following lemma is that the far right can only affect the z $R^{(n)}-R^{(m)}=\bigO{p^{\min(n,m)}}$. \end{theorem} \begin{proof} - Some notation: let $P$ be an interval $[a,b]$. We say $P$ is a \emph{patch} when the $\Z{i}$ event holds for all $i \in [a,b]$ and $\NZ{a-1}$ and $\NZ{b+1}$ holds. We denote this event by $P\in\mathcal{P}$, so - \begin{align*} - P\in\mathcal{P} \equiv \NZ{a-1} \cap \Z{a} \cap \Z{a+1} \cap \cdots \cap \Z{b-1} \cap \Z{b} \cap \NZ{b+1} . - \end{align*} - Note that we have the following partition of the event $\Z{v}$ for any vertex $v\in[n]$: - \begin{align*} - \Z{v} = \dot\bigcup_{P : v\in P} (P\in\mathcal{P}) - \end{align*} Let $N\geq \max(2n,2m)$, then + \vskip-3mm \begin{align*} R^{(n)} - &= \E^{(n)}(\Res{1}) \tag{by translation invariance}\\ - &= \sum_{k=1}^{\infty}\P^{(n)}(\Res{1}\geq k) \\ - %&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r-1}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) \tag{partition}\\ - %&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) +\bigO{p^{n}} \\ - %&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{[l,r]}_{b_{\ell}=b_{r}=1}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) \P^{[r,\ell]}(\NZ{\ell,r}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\ - &= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{(n)}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \tag{partition}\\ - &= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|