From 62d60a9017a9fb9e38502e60fe33bb6f361ecbd1 2017-09-07 17:14:59 From: Tom Bannink Date: 2017-09-07 17:14:59 Subject: [PATCH] Merge branch 'master' of https://git.overleaf.com/9473097rgxjnfdkjdhb --- diff --git a/main.tex b/main.tex index 773be6389995515275ebe45a210cca969b0de548..be357c0b9e0687d57fee5f2a020f791f45525c79 100644 --- a/main.tex +++ b/main.tex @@ -663,6 +663,8 @@ The intuition of the following lemma is that the far right can only affect the z $\P^{[n]}(\Z{1})-\P^{[m]}(\Z{1}) = \bigO{p^{\min(n,m)}}$. (Should be true with $\bigO{p^{\min(n,m)+1}}$ too.) \end{corollary} + The intuition of the following lemma is simmilar to the previous. The events on the two sides should be independent unless an interaction chain is forming, implying that every vertex gets resampled to $0$ at least once. + \begin{lemma}\label{lemma:independenetSidesNew} $$\P^{[k]}(\Z{1}\cap \Z{k})=\P^{[k]}(\Z{1})\P^{[k]}(\Z{k})+\bigO{p^{k}}=\left(\P^{[k]}(\Z{1})\right)^2+\bigO{p^{k}}.$$ \end{lemma} @@ -710,6 +712,8 @@ The intuition of the following lemma is that the far right can only affect the z +\bigO{p^{k}}. \end{align*} \end{proof} + + Again the intuition of the final theorem is simmilar to the previous lemmas. A site can only realise the length of the cycle after an interaction chain was formed around the cycle, implying that every vertex was resampled to $0$ at least once. \begin{theorem} $R^{(n)}-R^{(m)}=\bigO{p^{\min(n,m)}}$. @@ -727,18 +731,18 @@ The intuition of the following lemma is that the far right can only affect the z \begin{align*} R^{(n)} &= \E^{(n)}(\Res{1}) \tag{by translation invariance}\\ - &= \sum_{k=1}^{\infty}\P^{(n)}(\Res{1}\geq 1) \\ - &= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{(n)}(\Res{1}\geq 1\& P\in\mathcal{P}) \tag{partition}\\ - &= \frac{1}{n}\sum_{v\in[n]}\sum_{t=1}^{\infty}\sum_{P\text{ patch}}t\cdot\P^{(n)}(v \text{ is resampled }t\text{ times and }v\in P | P\in\mathcal{P}) \; \P^{(n)}(P\in\mathcal{P})\\ - &= \frac{1}{n}\sum_{P\text{ patch}}\E^{(n)}(\# \text{ resamples in }P|P\in \mathcal{P}) \; \P^{(n)}(P\in\mathcal{P})\\ - &= \sum_{s=1}^{n-1}\E^{(n)}(\# \text{ resamples in }[s] \;|\; [s]\in \mathcal{P}) \; \P([s]\in\mathcal{P}) +\bigO{p^{n}} - \tag{by translation symmetry}\\ - &= ???? \\ - &= \sum_{s=1}^{n-1}\E^{[0,s+1]}(\# \text{ resamples in }[s]|[s]\in \mathcal{P})\P^{[s+1,n]}(\NZ{s+1}\cap\NZ{n})/(1+p)^2+\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\ - &= \sum_{s=1}^{n-1}\E^{[0,s+1]}(\# \text{ resamples in }[s]|[s]\in \mathcal{P})\left(\P^{[s+1,n]}(\NZ{s+1})\right)^2/(1+p)^2+\bigO{p^{n}} \tag{by Lemma~\ref{lemma:independenetSidesNew}}\\ - &= \sum_{s=1}^{n-1}\E^{[0,s+1]}(\# \text{ resamples in }[s]|[s]\in \mathcal{P})\left(\P^{[s+1,N]}(\NZ{s+1})\right)^2/(1+p)^2+\bigO{p^{n}} \tag{by Corollary~\ref{cor:probIndepNew}}\\ - &= \sum_{s=1}^{n-1}\E^{[-N,N]}(\# \text{ resamples in }[s]|[s]\in \mathcal{P})+\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}, Corollary~\ref{cor:probIndepNew}}\\ - &= \sum_{s=1}^{N}\E^{[-N,N]}(\# \text{ resamples in }[s]|[s]\in \mathcal{P})+\bigO{p^{n}}. + &= \sum_{k=1}^{\infty}\P^{(n)}(\Res{1}\geq k) \\ + %&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r-1}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) \tag{partition}\\ + %&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) +\bigO{p^{n}} \\ + %&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{[l,r]}_{b_{\ell}=b_{r}=1}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) \P^{[r,\ell]}(\NZ{\ell,r}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\ + &= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{(n)}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \tag{partition}\\ + &= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|