From 96df08e480a79ed3a7658ca4e8d72d74fbc4e16f 2017-05-31 15:45:46 From: Tom Bannink Date: 2017-05-31 15:45:46 Subject: [PATCH] Reordered some terms in Adras' proof --- diff --git a/main.tex b/main.tex index 91c46b5f44489acfd51c335cd42585372497ccab..438013c10aa8c653535eb56011b86d10ec44b2e9 100644 --- a/main.tex +++ b/main.tex @@ -576,14 +576,15 @@ Note by Tom: So $A^{(\mathcal{P})}$ is the event that the set of all patches is Similarly to Mario's proof I use the observation that \begin{align*} R^{(n)} &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_{\bar{b}}(p)\\ - &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}} \rho_{S(f)} R_{S(f)}\\ - &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\sum_{\mathcal{P}\text{ patches}} \rho_{S(f)} R^{(\mathcal{P})}_{S(f)}\mathbb{P}_{S(f)}(A^{(\mathcal{P})})\\ - &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}} - \sum_{\mathcal{P}\text{ patches}}\sum_{P\in\mathcal{P}} \rho_{S(f)} R^{(P,\mathcal{P})}_{S(f)}\mathbb{P}_{S(f)}(A^{\mathcal{P}})\\ - &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}} - \sum_{\mathcal{P}\text{ patches}}\sum_{P\in\mathcal{P}} \rho_{S(f)} R^{(P)}_{S(f)\cap P}\mathbb{P}_{S(f)}(A^{\mathcal{P}}) \tag{by Claim~\ref{claim:eventindependence}}\\ - &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}} - \sum_{P\text{ patch}} \rho_{S(f)} R^{(P)}_{S(f)\cap P}\sum_{\mathcal{P}:P\in\mathcal{P}}\mathbb{P}_{S(f)}(A^{\mathcal{P}})\\ + &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} R_{S(f)}\\ + &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} + \sum_{\mathcal{P}\text{ patches}} \mathbb{P}_{S(f)}(A^{(\mathcal{P})}) R^{(\mathcal{P})}_{S(f)} \\ + &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} + \sum_{\mathcal{P}\text{ patches}} \mathbb{P}_{S(f)}(A^{\mathcal{P}}) \sum_{P\in\mathcal{P}} R^{(P,\mathcal{P})}_{S(f)}\\ + &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} + \sum_{\mathcal{P}\text{ patches}} \mathbb{P}_{S(f)}(A^{\mathcal{P}}) \sum_{P\in\mathcal{P}} R^{(P)}_{S(f)\cap P}\tag{by Claim~\ref{claim:eventindependence}}\\ + &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} + \sum_{P\text{ patch}} R^{(P)}_{S(f)\cap P}\sum_{\mathcal{P}:P\in\mathcal{P}}\mathbb{P}_{S(f)}(A^{\mathcal{P}})\\ &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f\in\{0,1'\}^{|S|}} \rho_{S(f)} R^{(P)}_{S(f)\cap P}\mathbb{P}_{S(f)}(A^{(P)}) \tag{by definition}\\ &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f\in\{0,1'\}^{|S|}}