From 9f86b29b20b04589808135bfdb9c2607789dc8ab 2017-05-24 16:42:56 From: Tom Bannink Date: 2017-05-24 16:42:56 Subject: [PATCH] Update weak claim proof and path diagram --- diff --git a/diagram_paths.pdf b/diagram_paths.pdf index 438035c7a34d679026fd222a5296f7b80610c80c..e484ee9d748e362e528971fcabe13e31f36afdfa 100644 GIT binary patch delta 29368 zcmYJZV|1WR6D=AW6B`rTwl%RQwrxLgGO=yjwl%SBb7Cj=J>R`&-Cte3d)2C4tNKS( z?~YvpJB$a9BY|LLW@k;DE~f&Pbme04TT!}iYEL&WMHfE4+Hk`mUs~erBAmx~Qf#FD zph1uADAZ@tCCE+3t%KYq8D32vLGxL1jzO*yD&wW%cVsyL&pYZx`7I5dBvt87be z1^#Lix9-mhRA;b2XtjV2=6`+)9Qjw8X0=_y2qoq(6ekJi#DS}bv@A3!9yDZuIIPO1 z7_~f`5Duk1fQWrR8^{c7`ZFWaV-F&7d6X14YA}UnCQ1LzT6oJ~Ls;2u#gk7tVSVSa z!Qq_f;IrBxR1qcXQ=)iT$VZ8{AcoJe;y(b%vYNMLRa zd~AL~(AwG&=JZ{fvUmU^dNH})ez36{_W`RfIoiP5w%yEzn;|fA;YZpyX;Di}ayeJd zPAh%x+#Dwxks2SYIZ`UYJk_3qfnpddU#oklVtdZ+rz{byOoE&1tx4RR=%*|d%+J&N z1eaBzqVG=`B1T1C01c0Vx40VdgGh!L1a)Um z2$I02WcrQ%l<;(mq8euqF`Pak$pl!@o7W#WZ*7Z~$4}Kmer^j>J5(Rht6SF`cvG=A zyg+RP=G@eyuX1Q%!MEgHKx;brFmtUu6C^>bX}zZe0#mMEAirW5p-#MdgA$0fFTRxP z+OLTWh|(GLEE3s9Xis$acJip^22bGUdq)!tw4{yb7F0jnrL0t$TZq5C>0n!$DMq}e z5QUJ*M=^;QHT?;H1=>|d)}J_|&5DlK(-Y+|uKI(fLF`Fj8_!`z^@03~b@($~Efiba z--J&Kh&Kg_(t40*2Uf=wIP!}tUoqAl9_E*Gv1*M5e2IBTLko>fs zEKQxKebMq9*6Y9Au(g>W`BNY^v?x*or*!-Omj;%Na4flSE9OM8iL*XaU&4WQ4^5{5 z0+a!2FkZIKThA_ngn?JmFBdyRFFM4YW@VtJg5w#Al!#t6p+u zSlXo4iGOG_au}w5Fu)DQJIk_e*+u7}67Im(b%f(jgF2AlIjNxM3PF;Ivs)uJ9;QZ^ zW#ek?;Ks81&qFgJ>X%3Vf1V^s0Nz$qh_(aV|2XOWxBkcJf0VLBVtp+}R{vHN1sRH1 zl2WSY2h16T2Vm6xkHRDCvXvbs4;6n4wvHqGfARJt1pX`UrAREf6m}u4Uq1AL!6u9a z-A16{X*~pNs_vaS{ve24kaJ~jy%TMUAxOzsdoUKCC^GP0zDl#jPVgoFAEqOU{2%0q z_#f0_2;yfk-NtOWy&@Ute%PUuDu%AH2QyT)c-JpO`H25Q|;BP|6#Ui-TQb@7Pwg(TYhy;v>Pb^QXd4j#vbI( zY|tM?yQfd;WbM^i7Z8fEb~whDP(s;Yr^W@#^34JDQt*GGH@CshR6;v(;IzDfPX@Rq zcxu@}w4J8^nZerG>4mf#QvaDz+G`>1`56n>Wk&9h> zgzdJcAt&tPE!t6rDrmlK%ZNd;yZw<ui1Yr-IJIl7q_W4oJV8orTnNfzCrt(^9e%*=tuCD6`m&U1@^m zzL#x`M06)J2s*1g{Gjgm0W>EPzg+a~E}cc)&Pl1U=-|O$ZcHJRhx$Y<_x-usY^@%~ z^E@ZD3Xq8sBeqTpH@GQ8y?rEJzP`O2bt{rR_!&QcqA&+vFa72bS{XSaBg*vd_TAXr zwo8i(08So=eZ;W&-1WRPv5JjH+C<4N@-l9+_e`D$-H+Uej3X zR?-^NyLs32a_Jw-@|1HcQ)tx9b9j#7*UqoI668H-kE?mEuN~b)+PH>%*K^wVB7+J? zFLimn-CLZAbA<5)C@*vtU z;yna0BFJC7=cC2Zw8e=CMXhR&eS?~~k`fU=aH;4THwoX(Qz?E`6=;V1}8VkRa$rI5E3N z0=#N2dY2~S+fXf$Qi=5k(P5z5PS+}`Q3n*H_jgc@R09Z?N2Tl8|A9h%sQE7A^T~aBlj|;+Ee6?242WXrlpA9q&=t*U_|it%7S$mBTW!BH%3hRz zh6QJhCVEroRz87i+rC)%1FE=nhYXu692WS(Zi%9IhHzRP7p?kUynvJ1!eDi^>k`hP zMr(*~3W}+a{}CPBH*a8|1&y_{=4UE_P_^DHVIH$rN zgz0Ziphg<=@UH6}+_*bFhvtYww51jxw9wYZY+A~1w+YEiuy>H~%QGwGOD!(xnt!JB zPWf6hp-YpZSn>~s*=>}F2#ErFNzjns(DJ@PQ+}C-{!$Ah8~XOnKW|ubI{^}=lH$9I zinNREe9Df}S((=CA;5JUi?G7#?-=}|in+4%hdT8Pys>5Au+&2_Vg5>$ZSdrtFlJ?U za7f@|OJ29mLuG-5ihQ_fo%tY zjU3QA1Wz5!AWjbaNk3Fg)dDy$V1jeiU=`nc^5gdAm*Sv|;y97mbth^VcRb(5*j*RrZtW7>;D$Q^_~^1+7jj3SeJ+mHs>MjZU?jv*t{}tb zd)PEYl6h&A(t`Rg(9$x3euQE4EqSvaEAnCTYWk;(TUL{L#~e6XU7I7A%q|cQ3*VAO z1Dc`l!fl~}rfgxn;T7)={G0`=LJ1fA_>#;r^CcHsOraOyiTf`PQ$#z8zR_ICx4SQ9 zh;b|oQNxyCrjyaFvW#VaE#$kmDz9?}alXFaJ!3aj)3kfP;fD$4lM{u-(Gu;bFi==I znc)~^P3_EGELe!yx!JfAdwnp$xc=W^B-#aF+{^3-D2UG{2jzzSoBgqy?Uf`_-@_>ZoX?DeXW-}PO`ddyPwz0^;h-` z*qM$soJ4qpmf~R$dgDMeaTVuOT7H0m8`On^VAIJC^&5f>_T>W`f4C;|sMrwx0C8W) z!EkVJ{kt|5KM;`0!o)zAIPV<%MjsQ zAZQxcZ;WBg^Ee0a!or|gph(WaB(rTl?1RzJA$KdlN3=Tn2o$LH8SAd~K?HVZjzC1f zM80L7Dc>|mu=m}WhUQSt_F#oy27fU4vmzitUYA|K8GJDLfI#d$z{3O-0`YAg;m8nB zVO+Z)y|GB3i^&L}Fg1gMpZNqzObQ5EAc#TV=Su%Ha5vd2e`cx15fUmwK*>E^_*5{V zFQT~Ld<6ob7coL_Bw%0L+=D;lr+e2O?w-)u#QVCs^0g`eCN8wOURwr51Y#(tAo3w{ z&@wELM`ss|54FCb9kjO%fcoKY)WuJ#KD0Afu7h=dsQ#?{Ho*cAwjpRZ1I6vxJpXT( z4`)d-G6=4Id}e>}MaWR%H+Q!zob!(rLeBpRfLsT5a7qc`4}5+#H}o@4!v67p|Hk|B z9ttdx!F7L7_4sc3U@UE5nMa1%#X^IA2^sG5kBe)gA`Z}o_+*U*Kp~z^@V`+iLmVW) zlmP-PcLjiG?F1RR?F%Lt@5P+Kmn^1T(f?vctQ9IUfWVO`|C@CS2>bZf{G$E)E%Wd# z5Z}Rx|Ftpmh_(BDE6Qi!@GS^~@7&GIg>m}RQA_B9a}ob7)g?LJq4fL7(vX;op6aL0 z?sta-widxLv?~kXZ-}q^UGP`mZ9!ioXz+(3I2rEKg(c`qNZ;=F-QMESX^gkPESLP3 zo3P{ltGP6LFzNhR>O`<3T4il_BWv*;X({z;%coehDxRF=w%Gxn+Dc0(4 z+5Sy3%vqRJ$Dbbjd#uU-uq{59Hxr@oLmPhVbFLL?e7{b`{iof;?bOvpK8|o#7VE>y z_EEtbY5oQf$yMRhq()x+$i;}g8_gKe++qCai@%8DmY;FM7@R@a&tHEg{dRERl1S!% zNEGLdPo=V;R4*d#b5i2E_W0P=DgVRNk-Uc)M9zO-3|{etG7WMRO}Xxp2rABKjCn}W zNJcpNEGu{^g}cIRYyi)ZC&@o__m>}j$u_@dDdP&bctL>VbjF{D=CW^84FVhBj$q45 z{JZKMdC8J)@N@L!a&kl(^F_YPe#5Ti`ZA;C9|Xnl!Y}w?Kir2lPb$go%`6-`KQ|w> zItZ46d~fn49Qzz!t?%i_InaYmV)jBk7aKW0f3=etoq$xqmo0{NafqHF56zih?myn8 z=W!5#93JdN8?qZ;0Y(dHhpXm_>OAf|M7)wZ>y!u`oDmrPaIzI?AJ4H;a@kVZr*<-x z21#CDP(JyC05cYHCL#_#$A(oyQ`|FEVm#g%n=hRzCgZkW&7^NQR_N6@zie1B$>a8L zj5zuFivE3kRUF!-usNx8Y(Ip$_gFO)CrgF`)dt8#ZZ>ZGCL(Nzs_@?o>xpcBzKDgi zc$4EsUu<2A8dxMpBBmf#_fEPj2);aN&fQB>r8dF5J~L3dXQo4L0y^6S(|#!+TehY( z3j6}SM&)QmdF{F3$^gZ?s2p$Y`9nFv!G5^E-#-qHMVqPt_@c@wYfdmHyvpAc13H_) z<6QcLu_t`<6O`%cHJ;b-cm}y8wOsJdDo;uvn{H!f?^JtnjTU2ZzumH?L)Ga4;Zme0 zeclMVM{UtC3-XgJ#joCk!x*HOQ;u-aXN0LOO#`~fbjZkwF zdQ=99O_8b^`3jpJFA{V+pTx(4L}Gm)t<){-_B;&KdjwnBGBTL+xpzSBmz|FHry}i5 zXJE2DY=88TpQMQVUxlX-1k%;Z<5xJ;rbG(WPt*0Qi(1dw3%sJj!DqRwA^|E<%=NlecLI$`u6j9ce_F_ zUR>5kzqe_2O^#w(I)EQ^dW5z|WnlAKq>hlt!AEG^nXmVqJK8WfEn{ZYAzAjt)Og#H z`s9jah!)EFod$34G|X@w&*U%QjCi&000prsd>$VrxA2A4W7~gL0Cv&YI%KbTyUnQ< zX>{X7P?+j%9v10RCL{D{Bi-uLp0@qwZ!Ud%nlpAakeW4EzRyT>4PQE?7j3oIHt;w3 z?X%pw%on5kd?3U?4OzH?7fa1vS*OdJC&Zi^XXI**hgUaQ@>C8G!13W)^+u%GhC$u9 zL5`%xO3);Ff%HW2H$u4_cP}qCvXe{B$4MwhXBv}v>NdnU*sN?TZcTZQ&}2Nyr_#6@ zM-DNX3!II*v@~d`wQcuZwuo_hR z(vo`(xUNRj7q`C2thBvfpuH?&oe@~x^qsJm(ICU_tMRWzyI8BZ3Tc5cpDy<5cF@C% z+y^sxa#-p8DMK`O^CrU|t;~058AtiWwi~6R-m5ss!Ky&7;s`7-6x*DoqE&?$MZUPAi(V(cW9bU3;`GM#VYI%b{2{$$+iv$~Kze1!6R#pJed%MUlaWBOj$F!+uS znbCZ^IhcKXoYQNKl3y^tloE*$_ak zwgJyc(iteG_v?5skn=c8fMU*T5G7iG$nE+T47BGn?zk(5k2vVx%6-DG&%d(CXRLihCYsIC%|_M zA{dzim!h#!n`ZD1?$y6IV>qhS{j@riG!g2m3S)ng`Nq_H0MZoKNZM*`IXX?xbFw+r zRPca-cW9nZC9+ZCF%3SxDLR_$rwUwX`R#`W1)+i??X%>SHYcro=jKin&b<0Rkj1X9 z5@kZaRP^R->@#f&dmN>y8soq$X+S!z>af?20Lf!X`z5MkD4}^|I){iIF*o95&H7;g z_!lK$oosnNHCm>FFm9@g;ghOFVi_F7VR-oGIuoh(1&?~GOu^2mg+Mtq;xT%%qIq1f zJHdaR!B0*|)$x)JQB85@O6KvpUpAPpo!gl^LB8q2^&z4PE0bGdO^ZUK95_9Vm|Ba( z(y&t}VB%SLetUa|wwgbLvf*bz>|ubnKMT`2^)>8CkPlqJmuZj8Nw;}vld|KSUv%W* zVyG3s-ipUON;JWqyO7B774{4wJ}aVA$x0#p%lv@q?dR@b3+AY`_|AKwA;l;RD?vml zu^B3h1JD1-0}&0fys`AB8<3uBVd8k3s&@Fs-GS&yTCXz@N&XBh+BGe#A$z9~7;)xo zVcIUwQ6_lSR2F6K7@c`<8i?51&MoJE+cy~K{-r0MGl=sZAzTvG35TD_$ zG}dxbZ9wE)GDQw+VaKn+PiJ+}!?jVE>Ql5!{URjl-ej(pFP+-GbADei#f+!uQuq_c5Z@UxkYU|7Sb8A0z5)A%FZLFs_^NvubYOGU8@X}8@(lUNKV5^RmiNH@w( z0}aVsaoTFJP>-E)73a@a9{7Rd3PJhugjDN-mpdh=UWRjZ5%rb@EjCKtG*bxAq`=#j z3LIAaQ$aOW;L6Oj;Ks*(iY3>-nCU$ zUbwUlU7?UYu>vCy`@aMHbll_k&5~vldHn=vgu|{00ExwI4<=b9PUTBlIvxdPob7Y6 z)4EDrn_*o)pDFPsCJmDVANe3Og;^EBs_Y=XWKWr6H8cv(Y;-|6T*1(7XX8kd$m2Ht zF^wB)`eI@|5W{{&%TxF|e{c@l;pinNa(N{V9w7Une{Y!o8}U<;x%J&NrPN)J09r3>aBd-|Mag0opZ z4-I8#2Xe=ohBSURr*|Jks@IMl_tUU@juN`#^o;uk*1&K%X2n$n9RWQ_zw_+=)YkSk zzYV*^5liOWTswoBJua*z`FxbF;lEJh-kfd&vu*76j{8@7oJaU<4D?Wm_NGiDNkw?Q zxDJ*rdY)T;xXJbWoKER0YRbfcq0Oyz5hqAMQRqB{EpmKM`i6#{zv52UaMVGm zW(=F?zYxLFH<4?@!g~~ZS3QG~_UpNTXQh*3ZNm{xNrlX~T?FYh_2J~;7MJ)AEIUN& zfpipPF6G-|vIppA`z?6+I$QfllDOwt-_punlE=aCTQ^s{!9s!`gdpjMJv>8zk=IBy zO&$|d0O!x8q~F(cRxVUJU09q(bF;GwaCfG?(*Hf1#iE$3-Ar9IH(`ThDH0_R_>1Xi zM7d+;__E~b7O7rc$li5M(8JD{u)W-g|wuK?qJg?(7&qzyVd$U_8Ew{Th5{#cDn*?G2_t485D&9Kk z5?!hw9jvs$3WbZ+^=;YsEF=Ci;;hO#DfcXAxpy==7kACVYwMgirgmECS-PAWM7aTU z%x|b|^NuDPgKX|suPQG$^Lw9DP3}=qL`rJt$ z&9$~dWb-53%n6?cbC)+j*tLuLZ>S*H_h>~wr}^~;uYh@hk|?>Y)wf zc-}Gy7IaW+Iu~;T$&!&7Hy2JDbwRprLE}cYIk|z4Bh2^4^SPo*;}vC!_X_XM9jZ)A zhY-2}^|LDVX1J+j6AXR(D!#rQ0t3g;DL|R`aC+TO|`fH}bONMFfHD9-+|mZ^ zdE$%;QVe_~w{@A(scD{iW38RM=-Mrmvyhw*$FWXmxG+fs7JfS>$fnHK0`8Y&IIJL+P${O+0Pn|Gdcg0SF6*(Y_&1 zF@*9?5j8mpqH~q1T2wwkoFTUaEW-AeO(Y}`Hyk^Hx>@=o(> zFD<%wZ>;Z>b`Z2uW>##`7-ysl8~AFgg&IZOAzR@~YH)=scwIPx063MGY()9{F=P@vTjg zPy7z&xmB^>6GJ&{f*By4$h$(SS0g7|<_(Q{3p@=g!s5)2=z{l*pdXFR&wm-DH@WbK ztYLgY9P!$gJdb&qvlBf1#67CWFgeP#|FeTSe9Ez;oMg?ryMoGYd3A0*S1HT)ToD2T zoSG=!xptGpBdbZ@Q3jRWpFxUluK^ls{&N$ zg1kXON>WgY>H=H&TZj#Z6Q4q(7DDv%5sWt<9vCM2A6tXZi{JC3^A*FGnTN!>Ok?ov zMf|Vrcw;XD&8=g^9X#eG1yw#omG5W3qP-A|Z5X}jZUg4EcD;^m3p#ct`Mlx_bL*rB z0PjW0S~AjEBkz=$q+>F7Kb}rjT!E$Uq``VJhu@wYPB{Kd{;-5J8BF}B=(u5xhMKO> zDP8J%NW;=Z%~4U2yuHgEXw4`!a*sGub$A`3_ke+Ycz0Ts=0)CqvRgcah4=!5`hCD6 zMN009TMM284xIOX<-(>Dr%z8~&uH`7Z9`XOqfAqyH&51Xvz zOqpC#h{YA+}Lf1$yC9=pVq0QWxY&bkW#aq4zA_bN1-$0LU7U1{9@N^$~B}613~1w zooM>|eZ9>exALq-P(km>Unw>w?E8ovxfy3x{AEer?V~mq-3j|dl?n(`$E`BV#`m(; zdx*`WR!!WP=a?@FM@KmmgG3T1&X>OFc2~7R1q)7z6C-9j zBNq3noloA5WGjXXR~8elK&MtNa_`Zc?tb3<*1vdHUzT~A967HNlU7 zA;W}hZ5-Wwdi93g4Rit*+TVY^`ILbk;~i9Vpjw5@LmXKh%yQ%v>6Zr)g+NCdH278u z{53%sBrF31)7IH}4+Le;eZVATBRuo_^WqyLGx_HmQgNms?w*W+5Y(|=&RBey;DeBQ zbG^Cu{Vk0KF`xpmbNA2hz!buQb$&%$enV`7esSgk`5}0! zfAnSYO$Xurnv4)Cf-)^t2akDe1YH-x+Yiz~qxFG}JjoBT3Jf1p{c7_GWADhzjU3vD-;H4%JQ2`n^F z+-x_7{L-l@gdf-%zOeuMUlikaXN1gADNtjqwhQC5j(H-4Y4IofTml5}AD|IiSg2^A zeLA2_$YtGqzzkwkoz!YA@o6a@XHYB_Y5>IQ{)qo;pRHjV5ep;RDk4;09^s%**B9$Q zg-8Slu+_eNY!C=DX!oD*?ygyQX73v#TY_-cpiJQVr_f*^fZu0D66ZDezrY2p#%;b|C1qq-%rX zpF8aL6v+SX~3RWWsw+Hpnn1%!|A=d-ALQNouY{#ttmA61zjYcRPwItM*q`gEqUd+26bsF`x&B z#5YDjSRoscR2mW0#|E-wWgou*hnEAw;uoi_-+MFwHw}9Ywji3fCrHHHMo0Xw*N7`w zn7}a>g)JttSJZ$_-YHEV>vbV?Pwa6lef>D+)czFM-{RL)gJ1Woh zhBoD@L|~6MVWT2xsRf3zBDd$?Jr4Z_ku?}xFVlVGIg0FZhh|PzQ~lrg>>@$z^@+yW zgU;r$?1@WL+s_b=TMIFXJyg0M*D9lPxJPDqfjb`>rl^kvER4EP&l$0{26g~)r^@jn zsK&pv^1O7-2;azf*}WtW#l{_QtDisNI6Y+AZ(RdA?7KDK2?;$s;q(u$TbijIG z+QjC>yr!3AJxh-S1=qk}yQ)J<)WvDMI(TP@JTyEewJjcbNa1`Y__VXcIgSOC1S7?y zKvo;{s+z-~#pmuh1-n(AO!EO+o7`q}!4arhP0G?klbPIWUE~5th49JhRlz%xt$QB= zLBu@K(5go=uX1;ld6S|o`6kZROniN_{p};<^kWlUK}17y&)wbj0L4!aG-TUc4Lo}W z-FuQ~u16oHkK1|gt6*_mZW(W)9z6ZF93_a^^JmDK5pl_uv6(A&Q%S%fR-HN8R>zt; z<%x0+3%I2>_Ei{*`Qykb`o@#_I}>Ar{1Da9)mb}WjSP4yqBPjG`iwavXhDSf7=D|4 z;B?;2RvRM4XtJYoR}>K#O^M!>PxLODu53_ZPxmFy{j^PBOt0TUMyqYLSyT_eCrpN3 z$Iz#=gBD)TU}4h>>;|egE(;@w725PW1ras_GaSJPP+KaAcDF_e*W$ON>dl#KV5X1A zy!J(dx_0q?Hxjf$_$!Q7k9DMH1@p_PyKCqmxSg#3t|~Ba!eHln$=Q~!|5M`d1$8TY zZQfme2KO^`#%xaHrm&E}`TDnn$o_l_KXisv-ywMafI8d|yfwfXZc!rd9V#!R-8GoF zSg1kOo4Kq8|3r#{BU6e)t^m8vXYyt%SiY2%R{tBDnyAZ7iuDx!8Dp29TwkY18@#Ak zQI7Wyy_Y~*gsA$BX{mX|76*6MU2A!-?hU0SX;!AWsu1^25=Z;Jq39I0_8&I=aij(Lv3#I`)kcuX0=H zsYdg{%a~|+XjXi6@99fS)$)CKAKd`%U#{0xvrTMXuwXZ({(XO4PVgd`|zJ3&Xhn{rfVZh!xtw7mUXm~!1GTI z#LWeX6Y?>U-wTFv+9qJUMGBc3nrZqA3x*1uxV7&PN5MuZlthP696Rkdtp^dX8IAn6 zXL-K~<#%fkP)OO>uzlmgyTwV918Oi_q!ycP(vfXS_D|a|ZL`+!`A*3HkG8C$bt^K5 z!`umhzYkD7dd7S>{XNc1<Fgz7LA3)sYP2D|whm`y_f%slLu$^$yoN+9c-1@qG5~i?azsPJ=djh+4 zP<{dDj&{2T{3h1(sAPGMp=v8mdE>d6B>?5(F=i1$$n+Y@TDNz#1ba=WUub2z`>hhSXDs zT#muNL>%324~%yo3~iDMg><;hL&mGVNt zJsgPHvs9dte`B$ZRBvk-|6aJZhp$h)5^lwq7))ucoRX;=m`R)w4K3E6M&cjxGZ%ze zyuyqj{NbASDHTjwcAr`5Zd0Ii!gNcOCb?bc)-k5#q32&)?b!a(=7~7^8w#vL6YXge zQB# z@VE$U6*6pdJVYq{8CG82Z_$?wWcJ<)%f>awyi}`IP?=Jx-tsVVZUA<)^-Bv~rdsQg zt`B;HfcxKep^iMT=vvFnv>sW(-EX&ppG0Ql?552PRa&#G_Xn}7d0<_NEYzY(2xZgd z*6VK=WVYP+jGZ_NzS(wZ!x6mqO6S*U7*R5>9X~@0`mky4KC}0`bi_akw1X>FM1P&> zcKXP8d?w!8Ws9UBLjhzU)#1?y8-%f@!sInY{=%tQ=i|3gjQ`5ZQg6ca#R{l-D76Z} zdUO62nn}^XYPu&+>HR}V%Hj0c>Fq()yu4Ym#hR!9TbqWmWuXs@z`|C^9 zU&hO-pe)6&wesaFNWS_aGp^msqq5`_K zvIpl5Gbf7zpH-Jo12`9;7!XNiy_T#$QeGy`ec(8=oiUC@LNh#xOV_`Uz4~8E5z{(@ zp+f#Kq|y5u@wWTU@nH!!<-JAeE!0Rzt>bUQ(APa~tFgEjT9zsT3$8a=SWB1dVZPTm z5uS)hyF5_qjh*mBWwelQBpkAAQE>!5%W5C%iP&qu#6N&X}I$v zn9Rk&GiCOs`A&<zp7GHhY+KKdpWXjw)zYMT*J;zY_f*Qs-G%;hqTV4QP+6VDF_Zr%LO2ng~zo>nL8*k%x;+9J@)TUMnY1= zlL5`he6P(*p`B6k!oxeVrsZ+B(Juv*BPjq%;VIG|^mGKlp>K`}A7_iEH`-o5SR@g; zHS{-{WmjacLzIOjuBuuK(Sc5UHx4$!SSPc_v`KbaJ254pBQK;OLn#I_hfE7oUmQ^S zU<1^?M8=;y=GU9RhL}seuo>4ar<~!mrk+@DblIc&jd|wWQ0$ za!}8dxlmJ-FQX>0OmW7nSiq!hDTFooJ(hZ~M4vYWrSL{JZxjUYgw zkUgCk4H>iF`R1*v!MJsbhbtFoyg-sODb<@Ua{s_H7_%DEdFfbwO6vtb;<_N21e$`* z^iG{9;^%U@m|btwUn?kzP#`-Az9(Dtrn5|p$4f)@ZawjYw>h=bLL|lJZ?lXg@9@>; zs@AvV+ClQ8LXHM`VHMrJwqj44U?5<1i=hC?WPX_4Nm~%XcwM>9Z!N>^_m@oAvx=C0 zx(9fayy4;Z=1~Z;xcrjN<&SXsb|a?7t5S6`-R;;3x8wxsqi^!hAr-kz{ld{10STlg zP5mE7ptT5`o@ZY4ZguqqWcg86_^(q8`X>>*%SLXSe8zC}r{`UsKQo8F+X11*uS21E zYhb5Ln#-T2i1b~~C0_n|8G8xeG4tR}Cv_@o)Y{eC^lZDYpbjjO3m(0Xs%9{(z*B{P z*M(HqAtV2TL0p*1@O)US701$)Wo?w}^uXCBu|A;p0ACp4I=ZOln_6X@_xmZ1_$CF~ z%b1&@dP}D=hjq|;TFPWH-c&DJbwF zN!~xGRt>e5T)!D^G;B$~N*s5L@v!Mv4I0d738s3Q%sT<4QY zk1HIQfCR*8OB7$~ly*zoR-agVj8jx|`%+i>bXAQf}+gY~h@1y_bI~@rmw416a-tFw^ z?Z`ydN$%TafcT_mQ-zh%grwxLJ(X$SjINSw_=+>G$uvIKFQ+&C#frD);bOAlJWTI= z^1VepJ2yw$=?b7i#NkRGUOd=*-f$?XyNr`%EP9fbz za8UpDE};u8QLjV^%3X|NZWsOui+YV~(Dj9dKM1oUlb!j4Ra86t246oFv zbFbg8tL~-vo<&0bF~sVN6?6-i;^W8z$#|1Y0QxkMtl3;GfFq`4?EP1bW)Mob-m)jM z(;0scLMzh%>(XzULaB&9>N&Y^j?ikA2p!t`z_;GX~3PlG@8IY2?>l%&q||0Eg~jMHXiR8E~K!?CwaYdpQy|`l=;l= zDiX(D>)EI~;q_Zp=9SlWwoNNswp2bq_F&fEqaUuYzxVSKpGL%3wt`}Yz%4rht z=AnEjuBj&ky$Y6w7~!k3kKfyvEG?=%5E*xSXeX)Yb8DpFl!ao%j4JTVBxslciIR@x zpOd5;10NlPmxPXlJ7oYLuh;BYoC=QtWl6b=bu(;L`;}nK>OCDB;wB-!|E~ws%$9%G zKPar1o0@W?@lZMd?*KPMb{gA8~B#d+irHGIkJ^gER zN>EXtw>)vT2D61RN>vhtwXm#!m zx0ITHIEN17=>HJ1<6_W(8#Hv-M*H7uR!{0DSe_s2TKbGP4t)L_Z=;cbiSOt3n_5j{ zW!S(i$-^J^6!8F7VbK4lu(OWoD+<~)ZpDl14=C>L?i6>oBE>207m8bPcXxMpcXuf6 z?!Mh`zx7S_zk6;@a*~^y%$#}VeW!l44l{%a3mr|3$ZEwEhGumD!!g4Ln;7;SE3<-x z*P7D&S`UulYE{fbD4wI>S*`{@RqvF|Oxt8xLSt4t@Q=rXd`lNj?~AyGU0UT-4AMY4 z)mHhXlHDpgf2(V$?OiHA+let;ngANmiVKL-!^7KYce44dnrlt-{_;ujuAJqjpScT? z;RF)iZ4J0aY{)~6+uqQ~E1D&65VuRD~C6`1U`ot*wNwqL`l@o^LKL6-P%i~^n0)Eb1a=$U~o%NOtv z$zq_-`*-@c8wA&QSSAy)^ zR=T_2Fv&b(j@1%9kkp&DA=Vca{Ug&Mscm^+YZ)#C@oUq38oGM0{hpa7;--2lmr0V6 zBW-w#doqWJpzgA-Io!UwN3SeX*%zAf$hndY!mp*s2-PLid`k4vp5I1+%sxPX-RI#V z{|nmpbe}5$@uqLRAFQunOSgB`0)=Jg$Bd&6xIaU7w31%sp{d_QBQtiXl*8D}kQxum z%{rbCS7^jKZ45ZGP71*DbEn!^e@~cQdCEK=Miv&Wri)?2qfN!OoNUbnCEl*P#pt8P zw|Y~!?#3w5Y?bq(y60E}TQZYRgsG;R8MRlFs9Vl%O>@!W9Kz(MBG25WLrMPAZ#ASh zQ&U^xnaV_xYqW>Bz3C2GdzZ}cEtrd*gXLSxxK;Xkk$0Igwknrw3(HonbV~@x!5)V zXm;k>Z3U35dXNFrTR}lwcwW2Rh~(mc72CcSr-vS9Yi8PMY(FROrZ2GGPQkN@CKNa= zYuxeXkM#GI&S0@lNZZ<`m{1#Ta2z|NX~~fY{vuK~iz6j%9MHeBGB%V(Fm)AVk`ejL zrx3~Jd4sLmyyE3guA?cpq5TR4){CVlg0*xpwh4%dICKdd3uELT%$FT`cdv=9NkFn& zco8A0hdN6H?5+`pO=MKGD)8r_StDCaK)#JXj)o2Ut7_DU`W z{P^=;{cK{k2h^9fnu(6Zl5~zyv1~|O<|~!lzfb&_xHEw*C06p(xL!G;+Cx)vLZR?X zcSXV+^;Lx_rTu^&pT*e3IjGIaNO2f>? z@;`Vo3y6c6o%_Ed<^PQ?Gqe7uPSfqb(Pg<*RSRV#sY~$V4*$E&`~XxCD*CsaNB#WA zKcEgcsY@BmXa+suR3~vEA*lDT#B z#JiQegnWdhePbJQxD`=BR8-@PR8(TagJw|TJs@BWenl2^Aw>lNFgz2(k-Ngd1vXOq zEB?&pfIxOT0*3?(1Q$}0&Q8wH1_?tp$%r&mI;; z77c(L{j!G)o{hvrg##g(E6Vrx0o4`E;~!fN!V+3Sg7}17e1ZH6{pQRC1`@n7IQ|Ix zNPt85Bt(SpN2|02HKSl$z}frug243D=zZcj!?3}AuYCd#zYV3Jc!>7kfAA6tk#E2z^4}3pS`m2F=$6VHZo`70eiOPi_{ZuAkTFeU-A>c~v z*A;XMA?eoh{-Mt;wEckGwOajX|CK37l-N^~KtCqSl%cl|RB)g3SK7&4qYJ3ZS zhgP=YP8raDj+GRLT){kD!%KrbeG`KQ7Xm3_fG7Y82)HM6B7W4nDxMEAb;t`}FsV0c zY;SoW>FgOBmg^H84*PFbixcY40}-(FPl^{ZVKiZ;mwyc|g|C;9axT#};OZ zN4H_udpZF28AZH@5cvESD8#x18K~~Z0Z{?{1c=I!0QqG|HNhUuA59vN&?05R;1?lg zYyj~Uc-LQlK^H1z%oC)VCI8%Rc|h}a$oB2K9TOEnZm^IDu)%ahCEW9QlOqn}BD_T^ z#l{Y_fqo*rI~rhe;TU~>w-zDI1&eOu9S%n2x4M&o`U@*oHcPbgo;LoED04vs{`+S< z5y7}X>+k@Qx+V_D_m7C%J1+L>;~L#H00sgR<@!h+V_f;L!GeNo7TG2m-Uj|+vQubWZ&`+?k?Nm&esF{@24RH}qyy#LQ(w+_F zm_hvIcqo6H&lHc>&`q{7qHpToh7N+)0n%GNE%3AA5HV_HlKetZ0JlPbsucEz1HL1Z zUT2~_tm1Ty(vgMXDHCs%XT-+g{^yG|s_Bc@N|+C!^VJ>v;Z&r4{GCB?Uqa^6Ej zL%|j`(Y-hN7Wk$xs#0M`@ENPV1kGqJd=o`Y-@K)jJPK11#u~1H*q@}b+9qP1hWQQt zF$JQA47fR{eBUKRwr@&+*z0G9$fL9(mK+$)hj9p(aRaP4};z8@2Ma zj)GXIy-kaBXEpY<^h?`rAs*3C|LVrAn`&%X@Z4Bw2K1_LMg%6JN@!2T(ea^UCRcsBHyMPsz7+p5!mqkbo5km|hmMn)T$aDc)I-Jr z0as=fE=+9!#K=nZ($Or}8rQu2*(C>xIqqD7L2;sAwy|X89aCDLx?}I9b?Dr86H?c% z-39wR!~Vd)_yzX?oqxZa%_^#0UuJsrUJAe^ABS~5C<)zhcp>mD*RXiYRuPnL{K2>R zFsyiEtBq`5=KFOaSCf)CTC*5AT^OnOdcOJ~6X4NGOcFil8I-3D*bJYy%Eb~O+L{eCLPZLHS=suJ!g?2F*wWNe}%Qftm zNmBQ%olOvsf3t^C2<8^UiR#OrYlCi>%<2CK-k9R(GIzE`z zy{HL-eQU1(w88u2FS#)v2TO8>Xj6m>iqmLR?-p#O*jX6U%H`id>L)k_h^)eFW|eL( z7zBmG_w0omaWZ38(YT(JWB3B~TKXHeAq6iw-#w5g>U(DB6(9@l29(qJyiF-Zv}3j0 z@i%`Poz(En+9vVNU%Mbz6GBIR=eH^^9ki}0AP8dtJR{MZ4Y1{}0_~F@AHNkY$3%uE$o!l`emo^J(SvoK2nuSsj8D- z-}t;Z8qxPs_=b4PT7WPwIOV*7iCpCw?_d)+xsCv~k#cC2q+4=wGO$3pclezVTtMOq-7$a0!%U02{Gh^`@C)T*$WIV56?tAb)$aWrpT@ zhIhabVuQY+jcL@H0DlcBc5nfuZ3F4rN?)G={5KnGO~-vEd>a%f{}6?mMJoY%Ird7G zU?==q3~BOEE!(P<%z|T zbmQqCb6MpJ&DQNL4V_p}X7pamdA>NSFYu*3rQO_x$PC1+Zc%vo>t=3Y#6Uq382OOa zjISf`EWy{qOVP}EM_}$Ahoo|tK-Cu(gRbn^@`z-n%7u|`bYO%AiOs-MIB~!jrHWnP ziV2Cw`k;%a@p8S0_=hX$kfI_G3s@P3s==tVL)Po#W!|BXdNll~GzwW+3QqXfEZf9e zY}ps?bwmB8@->P7a^rdYYqF~HFk5utETX*It1&#UxaX0faP~ub%nMipj-Pi0@<^!e ztcvC8?fi3nUoHinkgAK+8+=uDcPXxBzEIp93q#}(P?YIdwqbHHrd_Tr4j{?Wsm}Rr z#?QJgbW9&e9kk(v6H6}m*GRG22;rJvZhYJY4Nui~LR{kMBzl?GztH!-ulX2_+F04*i{3ykTKD9_z?4qviXF|A^kpGFz zDsePm&&eMsMDulwVAO-D9nek8yI|2Pg>31+qD9Z4yH-ge$JWiU7Ya8XBVmKRIH_WrmXi)vH0w*=*%p@ zuREPoD09xe`_eJQToDSJEu-?z&#`s2(uQJC&zPDpjrjo!{Da`~*$m+Bt4kLVhoY9_e5Oc6lS13G-x^-TWsCpi=b_*R^& z+KNaJNpc1nZhCBLuzXA|h>-5dkmVS+7#xNu3z*Nd1Lh1Y(a_hI@WtxWb5ZqC@L1;m zu6c{R#x+k`IPD-Yd8hi0Zyr4gBs#a1wv<^!5+td6r}!K!B0j4Gm$c*m`~dBaRL<{d zSW?oVYl*%WW4J0(a*v@3)WkxnULL%H{GmXZ#XpIw&UX{m5eQR`F#*_lDjgYmAQ&#aIz<)5k*m5d^GEo72V1s~iil$sR## zrG@_vQp3QGd?2?_3^%$S$~wUPer47=?WVha*3bQbV0#KRxNY*ss+texcyPn&VG#`g zjvGRIV#mXY3N2dmUU&r`lSH-wsYi4V=mFbgoFI7oRoE_*kf+%g)PXi8&j7&MS}yTGrQp zhH4C>pL=j{3(_Wxy!`n}NOQTq6u2-DxNy=VOo%zjyqr^URQjh}1%8N4^uy%ruFd|# zy>N{`*=J);^*w5ZnakxAQx(FtD0!kt0XIUK__0_%e0TXRSp}qU97wEq)HU!5Xq}a& z{2jWWCFft#@x|ZqsI`E{^kkLZaEg9B`vS{(Kk=i^kWBUoUMAItVRBy#%%DeyyJq(+dJ=R_E6x^EQ5Zn)&P@Vi`y|tKqb=`#OpB8_C9VTS(931Hu*kcp3pFr zSbS_MsV5iY_HJITQO;;Wbu177Fzk(-uZ?~2Zy7ERC_7@2dN{;6U|Mc&fSkvDIj((_ z`H~-hmQ`WCf%nVxw6FqJnP&^5GZFjQvkIQh_8cp{*`ggYIFo;Enag zel)ft`}nU$gZ)H~t;NL)khLu$r4QfU$fh!(w>)RIii=}fQM0ePIunX5^>(5 z*1B&7r(q=uS-n?~Blkfs;}>X|Bsz0KD!dK3r{3H5LtPzwQgH96RSTH1#5WZ3{f-yb zL~vJ3n(QSiIXsYq;}mw~Mn#cMEY`T?wA0eL<%yNwVtkTR#NS2(&^1Nl7?gM$-^z&eQ79P0xXGG75hy z9J$m`eBt@wO9|am>|X;yyV*64i>w)y$i%yuT})j~T8aRSYa$1Sr_&E_6GR1g*YY4s z+#~{j$&fBtUi`ryY=$%;wbT5X$FjTpe)=`d^T##h+*X;I4Sg84$;DUfg>6eu+p1qY zbJ?SP97|yR1{C4j27eqXD9T~(Yc`WNBd7Ib3&UN=x1&506+LAQ4Oc{269T7WTsl9| zK4B$~CWWwp>O|w1y#m#4{@L9S$yMR!zwYuQ;!?)`>+WKE6oKLokQ5U?hp5s=dp2S_ zM+ub?o}2mdQrWr*V2{!RZKUS5)D2kwie8^id_~zGZlA}A^;LQJn+E<1{v+-AW|EMX zM?suPAzFqpieM&0N{fwGc4xd?Pr(J@!c8JOr8bbU<Zf*Z!Uigeq13*DkV3 zd7v573>@Gd3SPLAtW!-s)TY#_!Q9;psP3b>Qo^R+OObQPTWUENa2L`H9t_DLG8}u$ zaK$OtFDlGe$YOphj#aqnG&7GwZiY^*wiYsr)qd7ZOJHN)^gYmTchD^+SvBT>d!eho zKtL9(twu)wg=iVj=p%b&y`M;yH3^p2Syrzx1zd(Ypg27ms2f~fEM?W zziR$z{Ut?an8yT4wGm>tkO5YEGC)a*enF5oEWM0$?B!i+G)*AWTPBr~j)15pKXoC@ z8KCKxVd@fH7;XqbMRUy2evR?SqK8x9-$#S7i+l|D#H~d>_Es&`2UV0xceY?QxLLgo zm%O>O1s=_Bz#(dEE?7{C3aEthhJIWAigM{tzi1FKs%qVFJG(Mz2h~&h?T03#v-sj& zV{gZcO`)+W)Q=Q)jlds;gPP?{MP1wi9{>r-^51Nhe(L=}(%T>N;O*U6r@29VsVaE9 za4Qky)9(-a-4BygJ}o*ji3V%hfk9M}%0UN_=#9P_-kr4M`uA;0eNE+4_g$=Vv=$kd zSrko5p62doUPshFA{1?OCOQV>35L--3u0+_iH^5OO~XZbr1qXO&TlpyGGg}8+yJ7b z6Gtj2+C*{sx#UT1p9(zAb;<{v{bPR0W234p*>j`qAEM8_!)k1f#OGLoalX{tzfTzNK3a$>q|R0sK~Q zL7YyG{N^V(+5t@bp>W<+jghPBRlp!r(x%GlhTzmd{rLTTifqb{0Y5M+b=?ComUAQw zWE*Z+vc30M6WizH(FY<)yAgfzrSqp@fZ%P#w%sT2^OZ5s$GOC)+F-DzJ}NgulRP42 zgSTe)DbdSxer@Xb$?HL!i*|!Z=QWDyWw1t|)&yG5-pvc|zQ{OH5AB0t8Ng7O+qxh3 zxNu+9t8B3r=u+S4fAH9NrX^wV59_2*zFca9eR|BjhrOO^#~>_<b=nrgZ3x%#>%e_ zk~8_7+rQkP(8NjXsW>cuYj!uX=*TRQxyKk}Qzh%C$@>H7hEV~cONxH6pFz43X)wY) z;v?8MsC?EpIbse$lWx*KTjgA!a5}Dd5(4Wrw(55+k}oEfj`v{KTY=6k-lra$qRGGY zmW~gn4X)wgaTuY&uPm^}uCwEpW}F!YodTPOYN&oumgOabgH|s&*ssmUofTZ@71+c$_8yZag6U#YFD zzvsJxI;|5g&)Fg%+BPXaB^NPg3br$J>an&Sls6NWJ6{Dhh_9O|3=8Jx0&~X}q;{N( z(3GU~58NZ{U%!djXIPdi=UpIj6JA{eI z3lj68lB;BX>c9|sJiS)S>{{eFnn0|+q2WRW~!l&gzMnGE#Sk|s)OB2eW{fZdgLVd*0 zHgE8hF3o)F;t3Dq7R*+b`$MSg(RuC_1B0NO6ZrLj+S>6GtZpQzM)I`ebKpiNMPJ4=sWSm^qmL zpD>YynTzW`q^dT`?p*Pn_>&G-Idm~p9=rbp!fE7eglvf>p@XS(KMvS$&DvQf%+6$T zLy%W?;xKaLNt6S`2*pjE+leJ&0?E)GBVS9xu4n1PgURa1j5g9ue~!8sO=o`~7gLF+(9!!2u!=H0ZZ1SU99T4x+j?K8Ptf zhb}~B7YwfU0s*dhP8x#>#~Azqk;fl4#sVyJXjkiMSr;Sxl~!h13`*En6w*&91Q{Yg zbW-0%z7ec`iI%=>s=b^x%c)EG`~()Lis|efCWSLx+M2;e61B`Nqcu}+W<4?&y8Em^S%Gs zF}hPFL1jUQl`Uj~j0&bqqKWrD$H~hT4USXQi^1Sn@eQLN>jV;21jQK~0f)-O@z{w{ znF$UA7hy<|1X&9v2?K4?0~P~S7xW8JCM3p>p1%)!)SwKI6X$TIXn7;R1i6CfW6ojIxILxbzSU>+Qcf|uW&cQwe{Ii!keBa zngbm^H|s1X34Z7?R7J*A@9=lH@{9l%}9Q8 zC=E8sV6Dh7T<(Uk(&A10n} zGLLHysIyqd!W|$snZ$BXrxZklb$*}WFyOCj^o}>cCXq>YNJr8jVk}J1PPt?zk7xI! zE8=s{prAg~yCTo?Pt^}evp?3OkOWYLcXy@p(qgaREk2p?ESO`rH`w+T*d_3&53+Dy z@3MP7$7KZ^O4}4GC7J#Dp!#=%_62?FRtc($W4A7Alidp>$JPdJ6|D~n;D_X@Y|o}h z%_KRoujzEuf<2pUuc<;kIrul8aOE}!9@19`cV5DO2+ZKJOCLj~6q$H`ev4z%nO%RD|lK8{T4>{TUUNvIH^o%~A*bzkAC z_LH);RgQttT=uHf=ZJL$n?;00>D`m_O77b4{TOUX;sD?lX`@8mvZ-B3D1@Obxik-?^Uzq}IJWbTymDRzB@RseTZ zH->OKEgK!(MZHTB{)ZkKJb%+)+d+!mykAS&1p}k*RgK~wZsw0w;MUn5VwgOUJ#@*0 zn0$>F+D{THE0M!3gh@-qmAO2{oq6njiM;-r6gD_cH*h2ArRAu4Hvmo8hmSP7wrg3iB zNUhcD`9`Vo1<#wh^h=oQ!pJ_e4{-J86J-Vc@PTn>!VZ!d*Jbaz_-y9XWU~Mt*J&ex zUEb`DhzfWHpmR^J1mH!sPaCvR7GG$%<|cGVaj$~ihf?6hW&q>y_DEf+d}bXW<`cK- zN|mue;fb2`dEzM)`MBs6F@stCeZNOXqb9~MI#2cKB%=-$o$$+}N(Y=o8VYB}yo;}Z z=}FpM2H*L}UF`;Q0%<8Lz@?8Y=|gifj9U8fhf0y2GR&UW1@K|p{v%xdECbA3`tPo! zU;q2CCcgUJU~Y?D<5l2LyN>BXBk^dQWV;zk@i}3>deGh?p3iM2^$1;fdMy?5ml>W& zA+cg&fadGIDqn(p+Y>kLWsZA7c&YW@T}GOo2A)9_Om@ugxltU}>+F&QeR9($B6c!U z95z5`U4Pr3Lm(AoB7_Qq3+{pd5fG-xMv zHca1_-&}nrmQ|DKnWr&{UfOHE)jHn^p9(Tki}>Or1(npoiS7~^*sMM@R&z6b4j**x zb{VaU(h-mvglKE6YjV86&nw_{6E3*^t$L95=ch|G1E6K(Z|<~utnzW@w4U_U{Uppe zI9MjEO_n>~rfEj(PXjFY=t20l*_XC@g}|A|=xGZzXR8w1i4TK6?SgkN}P1U`vyZU~!;XPwLt zm)7)K>%*tUWkuQ*m2XcgsaY5s-~=%{q6@CgZXks{S`puq)O^Fz&%8h3NKLJ-H;=AK zMgk{2BIoNxs1I1t2EoTzEoHf1AEyvxDc%V^OeoyQ$TkY-v4&NXUcraiCNQL9YF;GO z1Q|C&pz36Qs^6s9F>7_5k4dv5u;$TzVz#GdmksoK7D8 z|6KUwRpYWDFiKcBI68q?*#1Y_1Nyg_=|6Iv3Qa8qd}&ml$Eu^DY&eCjU<~mcmKHcV zWUY{azJA2X@`#}uMEr-XOAY=Xe2vUKZ87$8#0zToYHAv;dAR0@)IAViXPJ9as#9~& zn7ZRxWm)#QRkC67WWNu58=`c|H_^^3N>=ido``_qZEn7m)%Nl?nPoMS0{g}rq8Mue zSQWCxk-8PqsXNRl)d%nvawk#+OVcqM!jz$g!QYV&LYJ#y?IM%%y;M)du2fIQ*o!8n z{<%UOFe>iW=u>`!uhrZxGd-NZPrTD|(DkC$bQp%g`om=|%~(~rveuM*@y*~P#f*;o zyQCH+Hx-2%M~TcqXjNRgx#=%Kd^2({025ZeHjQtCk!abM^*5*ut1?>IX~G#+#7uKS ztfMuiYudy8KJuKWndPX`DDL(8>BWLV|GTcS(Z6{{<1ceg$t3bIk8~BK)*QlD#*ari zJQo@k2_%JV)6yQ@eZ#Q)TJa+*4N!=hyr-AY9uM!t%%#P9`BvssxE)}iC(7TBk0;((x_jLLm9Q%^6O-l8-&z3)tjJAqb2Kr!F0{@K( zBRwAM0U!4HI#I+7ua~aOAf`7B2OnfcpYHc9fGxEEjgjBF@Se)5--c>ILj*0ERDiYZJE%GF9-_|~LF146Y7)nDG|nkO2Ce@M!nAU%^d zR^^Aty|dpzdZ^cLjdJpC`rZ_4&Pf) zM(5bg42n~S`1aIEi=J@YWtmet$|FVIuR&0!fvKwj2^?$E1Sy92@KelW@l~fxm~^9x z)#bh>ncnN(GiLHw$L7oeZg+b778H!64N{QR=NG0E?td*UIYGN7Un0?M*tX&ry`6kPh&0dbT-Lk(38QsT$<{!p2>A@>#r{(4U8^3@g4 z%}0@ngr8Hsm!iBTbgW1CulkD`kEA5L%3;*AaPA8FHAO02nl*rqSBI1ur3WGR zX{llo-O$#9PNbVopvQXP26oX^kaB>JR#2yP?I^)I(u}j;2RNn6+s3weIT$eHte0|l zwLM*Z{Eb?A*Y8recZHPy^PX=XjJ=vy?l=QMvyZO$`{8#tZfDKB>4=STwotru1Jr3K z!Y?*lEY4>WsD$Tpo1pL9dfTwSzr>0dkw`z`#kzD{d`))z>VjYKgR7!iOKnkGb4r^TQz7OYHbHJoWF0(Ms74H+BRu) zD(h)Djj3(?PHS|q#U6cr7}Xfv4s&={E()*iIN85x$XyXAOPO^?UbU`rZCFwNW0|4ziCXpqJ3@a@S~Idc%jP-l^^K-?%}sJ_oX$?Yus-1K z#9{T3Ylk?EM3l-)ZCksSJ1&1&_Dg^Ss%Xx-mb3iExR>btgK=uq0`dQhA5fMEZ0vF0 zN=N_>Jp@J-3lCEe8wUcT21th)!~$ae_fFZ)&I!c!ujv+~jKC;uYi0*xWBbpA7)XbY znM;C&laq;6f>o5Ai-}!COpKLVSb|xcnN>ubor!}@0QCRg^6wN``2QHd0%B(Q7tTs( zfwq4WN-)G`nm{yRzkvai)S2H%%f95vDiGp0t5CQlKTIx`qc*YATktDV-XX$Coo4)x z6Yw#4YUf>jQLU_N`Vc&=qj!A;jOm!WQQ;+UXf57o)o?vo^(r?*ZOt!L?>Bho@*XA^ zeA>TYaP8zDF5Ok0p;*BqRs84oA^Bgb298cf4o+?kre+BLVkSEq0y(+3f&{{U0maAD A5dZ)H delta 21607 zcmV)lK%c+lkpqv_0+1pEGB`FelhJ-Cf7M-0liaouz3;E!Q9cmH2k~`vRjexCHrkuw zLuwsMaY>GnxGH}?4U%X8Y|H@O)3nRlndx~1@w!RiJuVlN%cn&y@1Nx0Rl!fWsKrR3 zHoa&oyi&{S*Qb9kfO)^{z$Yn840ie7lEUd5Vbk{T^ZnDu<@{EO7`3&_&k&Hye=p0^ z3aweCqFKtjuXQ-#AfT-lIyl&U3Vf*%Ita75(4um%L0TtVG)}irj5gR{h1}$J!D6(* zDrJNTUT-b9gj@8cgg4O21&!er?SXKR!ClZ8{*qEH+w`S?iV%o;PeIN`1Iob~h`DHx z7_Fh0iUx|&8d?(3U`x0GV;)*Ce})?{rlAF6xB%fMr=}Uqaq^g(do5={8^iNj31N{p`3`O&jAL= z&Fe5IB*Gq@UpoVz)u|`oK_L;!iRjKkrN%ZH2bCeKaU$!Ls7I2Mp+o ziE3up!xL=vYc5bNUq{76e=IAmd%%JI3w|_PBJAM_w)P?ysCE~lVj}jDxn|LGs#jDq zcXfG#V#F?goY3b4%7JF3V6j9)olcOPH zEpM?}V;xVS+{oeuwh28?u^iYoS{Dm8q3b(Xc6>27*7pR;f^4mQe@nr}I=_Qu#}|WR zy-%Pl$kw{Q6l|>fJJ?6&ixcfBjdA9@EBqT2CwlmKLi$rI3#OGM#xf1XKS6S%im?g# zPq8f6)|wdWH8ubg%8o6*pRfQF%YtsLi?Qcp6F{Nt*p^?OPuPGCm<8cR7-P{Uj6es= zk8p{OtpLUH;9HC1e^Ruu8R%g75iZfO9iUhqd}~8ciZ(U`9qc0$#-aIC%w?dx>j+vH zCxZBS!V*v{3#OG$E_E7u0t)3u7Go2pfMQv&tz~j4*w__xuu{EGr9(-%1e_T~<>>kx4Z;=4k1GZz96|@o zgK*;!a?K_z0)aB5i_r;>&;j#c+_;2XwF#3zpbY7jzmc182|Y9q&aF?#g`2Sn6w8ru z36Fh32h4VmUG{;jvTbfSFKkyaE<(!YWYgLo>$GW+k2Lbl)k|C|>+9 zFyj;`m&AlyjjT(b$MK%fliVsyqSP%sb1jdadcn{WyQ z%8+hZAY;ZUbkICFx4JnOZpJB4EJwyAJmC~5mY>{CY%Dra%5b>6HbAGnNV(= z0v2wV!cRBpmFbif=rm+*vZpkOAH8`n@OH(?t(;D_dn3zOz`eKZKDpv=HGv@li- zOJK$~P%sa&^{PHttMNjk1j>$W3C{Qi3g$t$S=E3ue#wh7Ots=XSLptlZ49r5!Lsf6i5S!Z%Pb6UxoHKc#XL3z~Mo3^`Zf z3Ex1$Oei-iotDZ?EOpueKlB<;_>2Pd4LLBgA}9s(Als{*WJ`lpnmL ze>H3i!_w-7+=pW_MdkMg+3KlGxrtR@p-=7Q@yH9 zC~r*cCM0Y^dYu{&LFzZ=1NNX5>?w%2j}vD)T%C>+b3k^c|NY}1-@aRoG4KBMYkJ+@ zef#?#pN|MRDBA5W$HYmZa5!>sEqxSD$HiLVbrNCy)%OQfrLfAt9-(5!-=KP6e@@7d zDlK@k{iWUqhqaJEst4phpO)jzU*9*+k`mf^AFdyj&{n7QIM3G_mfyd^$#wmHy*9Ac zTc#}#iHI(At@c6yq>al?J~t1Q`k{G_RyQHl2;U0&2+}}ndpoRzN&mrU8idp?rkDoF z7@Vo+4UD~}&8@In#n?bMVWr#Ge^4z=mKZvOv^j?1+zvXxu~0SXyZ~1rT{COt*uFV- zw1Og`s!7WINbQYeku>9z{%+h^YJ^w8>RVAKlyO^nvYi&eNNJYgjdSa-;-d}h`4S0PO&uue#OT6UOEizyT#rWAaW?pe-W}rF8jIZ z9I>CyQAcg5K+c)J3qB3Y7_rDzzf4-8U zGUirJbt9u_PTT%mQ+j4)Eos4tHJ_vX5VZx?ILi!rC z2`?igt89)D{2dQ$he2!r-w-@T(uTCzyl2vtYJZ<^EJS-}G;=U425FWp!VzosY2;1_ zUbpDtK4!s46)j9ty;$D#7%B*|KZwCNZZ(KR2a?elw+|=xVm=6MJUFkkV-VZmIXWTS z^6bk6h+R3qsMAJHf6(MT-2oRqN0nuTIPf`4gknKd)z2+tTI4I@zp+ z&U3qVc1^Zf>gq)ibIa$bg|v;n(-Lm}OqP&%JO`*yik6%hN5tz9WzWo$+L&RC_B#R}fL z#iVCdCsX}(9EGtcM5*^NK^p^yv{JXC*upVbbl^B%l+NezsDFtEyfL%~`qmug_$`-s zHkkO}*mQ7=f9mduk|77;*0q}&LoVGM{ai~&$>G~yHVUWN%_>3Nkg5u?!RuG%z^|FHB`_XLM*XAT~2GG?OqW6$3IiG?USODSvkd zRFmtnHiC3fnn))ou<1!?(tGb6l^P&GC`m{n5IWME^j@VX(tDGpQ~^PXs7RF}MFr`d z8_PcD?DPL?-Mg|@^3BXM^Ul2UJXr}RyS|Ztf<3|(s)~SP1i*qINq~}$js_S60D*)B zK_DSAPEKPO#ufUvpN!KKibBH>aDU1FKq#T05Dd;XE008IoOiYDV!LLjjyn4=R0ch29B0B$=T09ZoeF8{A| zfPxzo1+#;|0Xh(j6VwfNq8-E)V1%%PK{42Wl;DhX6Fgqw5jZ1k5 zw}+wtxYGef8rlFoBozJ|to<9n5BPIA0I(qVU*-N}|11Q9|4N3~*&*DJ5I7bFcLX@V zT%iCxRc%3x7lt1If!qHCLVsM*2wXnI0|Ik}*x~@cT898s6$}6n+=PGTL))QXNDNvK z4RifDBk*S#+%>Df?UfL2ZcsP|P4=@tWf%%-hr4$y@XvBx;0RB+&)=2<3~ul6a}4{3 zNT3NE=Kc_>q5KDfbCLbq=Lp3BL_y+rg~deyP$8D&EV&Q zL?8hUxG|u9Fb62^gUkmF@qhv_sE1HLpZ^T}(;@?d0roIE48RuZ2!oUTyE@Jdb@*-L z_K$*j0n9--`hfwUpRa#CS>hOGkAS;k{|*1OVxYdFvZ;n5-=C5H6;xD2cmaF_goOYC zLZTo57$hPNxQl!6`+sL0eF*GNAODf70e3(Eeir-LFYcoL?%CrH3Aq0#ga`1?V!8+% zb)f+6e>2?zBnq;_y@CJFeE*g5|D*ZOD*r3f|GOjAhpw)_;@rOh|4$s^26M&!LExzS z5QCF}4gx0z_I7e2XH{3$bK#w zjN3X8{?qrz6n_E$k-yA;9Aozog~Ijmiyyci{+L3*nLfA=#IM;@>9aSqZ zc?ztINE2?QAKeoY7%8$M!St$(TQ4RW6OFMpmsOEhH{shquIuMy`B-@j_R zKO}i_(Uz#*)eLRZ?dYm5$=0T0mN5PL*$~rWJ7Bybx<~(4-eNq;@6)!lJg-r2Nd=T7dr>tvJc5Ci_|eau3IoS{`rN97l;M%jPL4QC^0>X%JA zM4NVJz|>#OReWY~(F_mO!cI?ik1d=%)JoGZAMFd_=GRG-xhP-$>es;89_!%{hTr;E zbt=`e3LjlI&xW5va6uo3YtGC8cj%;)-V1dzzL`Z&PPV|n*Y$Q8H8D!wo^Fc=zExg} zmfHPph+@AA?>0BlZwv3K9>*Xg0c^R?H#(z2V(A52BX3uHTIz||XD!E%x5q2d%`ZFI z3xA?}(}!ro6DIR035q${^giFj&jjd_A?v*fOZ9I`nT~fliuD)tlH<#MEJ7%Yh9+6pjr%tJzN>pNnX~Izv1L3K=X zO-b_};#$2`OeU!6u1ep2z(eS&CsskLS_Cqj7OA`TSNfwuzbB-a{=U5b~i= z5o<-Fr41TF>Y3BNkrVJ1-`F(O#DA3=U(Fh7g$9v`Y~|DJvPgmsFWEtd_v&>g=4_V6 zDhDr}GYto#{DFL@y{4Q5@+Q-(oeYnkmDD3mM{0g5)?eR^nh^{WO!FxFpOM_1r zP7c2}%*)CJ(M&Jb8|Qx*K!1EU^vs-Clq3sh&4RXUkpXu|BU{&4m|xPba5|VtxfQ!ddS31o`Qf{TCl6IuY3@>VGI=D^KO8+wxF@ zJ^SlD1RD^T{rxek1^LbfITGYGn6MOcZIEJbivkPu^pv%KZ~q#>*zF1}yY*FTGO|6{ zv)52sQx2Bhz+jro9& zF6~S;7^(@xxUEq-w||c!F`@Q>fx)w-x|?A_mUb}6;(^HSrOXz~8&t*%5A3HZCoA5U z>RKObd@c4q+>i96X<*dZEEMMFZRm;e5cLx*EtYtCt2*zt7^JP9>N@oPdZu4If!K2) zKdoTUcWcvXx{((##Gi(N&&0a?hay2cE{cf}eHX6ZWjzz;?tg7ae^$RATitin%Y(X| z#xHPLRe&Swc9tzIJ9mS(i?V^CEk>%Y|N6RfQFBj@3;D7x!+}V}1d+&b#@>A0%%!se zZL1g%vN5Xaoy_sHBhcgnPz#^H^}U0bm-|9K3n`YY*3+-%k-9ptj+gV~ zlWmGiQq|f08Z5%=ZKHGL_cX7v{!;Rznjwja+cDU;kwD;xE=2|FzW9~h<}x9D?fyJ-#gzi>&{W$5MPVt*qQL% z$z^X+jhY`Ej%vPOT%XoXlClmUvo}c9)Zl1rP3^uv!2N-q&dtz$jpndW)0{rh-(iZ9 zK!QKDOswwnEo<;e;e@{@fc(Ygb7mucLOF1pTrdgw?v%o0?>yF(`_Yp2m6lP=i+nbM zEq{}E>hE9INV^!y+~mi3=}zN~X(i%6skGo1o9Q_UOs7u0jJZ**zK&d_zYb9+V!cgb z;azn8iV`?J!5X6CY)a^p1CHDU4+k69q?l@-kBef>w0yk-$9I>~wtc4?F~mjAiuUWF zrZSb@ABCs8jHfjH+g8nMI~p$D3EP}|#s?$k%a@PGW; z>8b2bu$kD>(Xr<-Xo~KSZLz_hPXtkOB-I40yDH|-1qjN|o4)Q}Ukfe?@@`LEi9=Nq z-q=_e=O|VzCD+CWM#X=TY*wV(2TaYq=L%F~${im8KNJI5qHTi668BPkGh36mYv@Gs z=AUt|Z!6ZG3sAYVy=ckpOLZw;+!K?1@DjhU$U>-cj!vpUe55RCmKsE=|Il69i-iC zW>8XldOa{n_ibMF^3T{E+$PUNDpqT=*Ms%37jheyZY8WyD_1Bu#!1gWszp-WNy>hB%s}-xOZq9 zy>`Df$2rumfXw0*MqO!xcx&*OH3LYdyto2*F-YnIgZ3<4%OEJ1ep1EMu`zn?`%2I! z&8|A!^$7I1FoOFT-E@EwNq;)u_czSV%pV^#Um!UETt6rw&u-LnsFWtEs>izF@yy?v zD-tFw$IKh9z_MI9K%8DK?B_}ul7SNIU#v$2Uii8AYmdo)`BwglVn|J<$EwWf!v>E_ zRaOg(RNQtV;Yc2Bb?eAW?NTryjO4~9z20G1=7Z?(&Q(jQw8k@SZ+|KHIUrlXjE0}8 zPtXp@^@T+rEZhR^T)>DLzSRJd@Zr_@tAQ_7Ho|SUqWP67-FLgW!p`r}Y-$u{^-ZQ< zMYUUeYJBzR_2uVNLny+=BXO}6Wq%7P_jPo#vMSr*ozlonqMGMZEoOuV$gs&>7ovjT zkpYE#HcIY~mO9G}?|-RokW$hf%*0y-RgAsUOQ~_49es##LX(HKN7xW*zDc@piEe8dR#S1B-icUJwy$oulpL@G=`WsGqpG=B;4!r1onY^UgQRa56# zyHIk6Y}r>WFL&YY;)U1Nm}e{%S?lp{eaFn+b4Gv)hh*7uM7NW&{W1aCDn+|kbfI`i7Kzk(pTuE~mg1pMQCx^|53`)<`~0NZgw~f~Bv; z;%b~!k;sv@*PDG!IzJ>QQcmFKuQ=?C0ymjN*-I01TR|yNpQq(R*;5<+mz7B;?ubiW z3wW|qf4Pgk%93ZbQ7z-Bv|W%;A2cg>ytet?n^-E=+A^sP<&XR8r=C<53B;U{ckix= zDLucd=70FOCH?p{ljMzKMHvZ>ec~VeoAex6yiH;W`zHfVs2lt2!K7@^a;deU>w)8D zy@Dn7{)cK8AeHpR5mLOOIeGAMV{xn(tUAiH)csn*aC22zas}lS@{41U?iEk0<@}UI z_6%Cc-R=8@T(01UVy(uL11X>Ved899N0eb*d4I3sp6M2BO;Ropb+~LU^w=+Wz0`10 zk?9Y97Ex@OXo&(CCwBQ!w0_rkbownzXqKV!4n=YJ)r^acUUSmwG_rSzb`Q_7EhdIR zE(-+lxL+g~(Gtu6oRNZX}7VRo5^D!T^j$!R3qo66EsbRHFkXyy3?_8(7NoAw&Z*<8fqcwXer*gci z#gvuBRmZm*S%|XW5F+I;e;)(%nnDV9;B9`sZ}OzvJ(#e87vCly1$cg_Kwgn#B7ff3 z-;0RnMWU}UA5*9lAGo?avz3P%@a+yu879QQa}y(lu%lsBbRi!b{a9bDX{~?IGBpmq zQzp*17?YcVRFUlP9L&ibqf@b?CQr)iF7KAn*k6x)rrB?^{W|#`kD=GrT;h5>L5~-y z=$PQNQ^_5YR%LaDjl7Sb0erg#|9_V)behH2mcp91f{G>GuhR7mIAOJB>n~KLr0-wm zy$wC{@Alm(YnmsWq@vj~2BJF8pR!eLDfHNGwDlL(pDw$WbGmx(fifZf=r2ji`bxSY zS{9A7JF9XkcYYYc#}89(Z!Egpna$fvlsC#h@zo^fx!hB?xXMIC>&Krw?tft-r!37A zIF!0&S(J5N^gZRpc4GPGxplR-{ZucL2=SUSjXBmdbPg7=(Ri8SbRs|<7T@Zo&O3QB zHe!r@g!qIB7z&yZahE|>Siu^RwC!<9c3#UBvZXxw2tHOR8H%i{YM%lEyu~T+8ljL} zVYM8QF8j-G<(YSXyF#g&f+0=S%fl~}@v1Fu?Inz!rugvGdbL;PGKun>FRf}^PhurZ!Ec!U zi3Ry0*6IeojF)xH%Q6$f7ja$lPsH>{!krbTm&D~l~*S2ZfY1H=E} zW;!*`U9O#(x@6`U{rt)WYD5NDbEA_BtZMA1V)>&@_{sb;BTi;6on~xo;eDl|WK!GX zrRJxxe54AVH?<1M4%-3D6$#m-g(_mpEUsp#aA_iuizA&uYkx*d2)p>K1G7Lx;BlBfF$RNHA&UJco+H@-@h_ubonfQkw~`;tlfgfZ;yWO0QW--E89 zJjIxr`KZnfnPw7RuHhi#yJh130pam?(#IG2I$cv2oWUK9MZ+6l=ZF>4LpSghB zIrh?ag_lmo7k?AO#BVpA1fuQ*xi)Q8*S|qao3?u5mG^_klMkP;@v_CKG6e6W36yky zsyn6%@J5IR4;0Uo)!CO5P^ttZoepw!(?0q@)c36DC_uYKP!3c-EAVb<+Q>%f8s4M3 z?oi{*BD!bNw#DQ~B&N1$ZoC>}Y^G-u#yq|)BBgXI zCvi!d-H+;N%SZq$IhGbRXxq!iM26#Q5ob}zp9;UT_->>tDgLC8?k~ry>rdxNOyuTx zmM0BuIe*7arx7ttf$3|qQDPKJJ^lVX>7;szWM$9$?|F*80p1>3^mWN7;f6AB0O{v6 z%R1D^n-`K;`}bewGJ|yX5qF%BW5(;8Jv%E`1Pt@JWs7-7PDsZ~z77b9MmV*tZMFJp z2#P*@X=9*YcsTWl$L7cLGy{YF#&zy9;zN-nQGfcBI;&^Fb0Lptb>^!O5iBI4YP>db zZwys+N+=e(125hUJ1#xmKz2Dy&*Q@hF7P@;`@lEs%ZpkPzG?MrQk!d&VVm7a>lM2i zIlATlVu%l}9mqDa`4B}?$4sqjKMdGLv8A@oaGI$lZV1O2zH zwbM@Im|xjb^PWhCPl2|CEbn@8e{B^(l2_`BxA8IyUiA=V$wd#@O7B0ev(z>S18wmh zHEMlJdC%7*FAEhEm`0RN#I0Q@F;p_#xPO}Zq%Y8QkaDYU%)+0+knbjkM>ir>xj19m zF>IdX0vmL^k-r9Ei@5ehSr?94L^|Y5Oyz6px^2}YZGJ5cc zrE~UearmvCk>bsM*JM*K;eF$r(rX8t+P2<|M7BoW6ZO&v$@q6h?Qs8)TQE;weSbln zcc;-el^7uvSzK>m4e!Tm!##*~eS9`Krv=PomU0Es`SMz*1rhShpGusRpeoTHxB_od zEN^6syY)H1A#ys4(W5HzBUTQQ2$?l_+%Z~$#BvJQEplgB-~o}E$k8ImK)@u8-L5|1 zc3JD_amj9(l4|_(NX(nO(+?62aepV+8)j-N8ChkukJ>Vcq2wfyCSH0H^63Ta0ZrjY z%{F)r>vaUN27~5BWQAGf9azO{FOEzd;z2V~3JwQ&jr;On0*t;n^hdigfZMZz4Pth0 zQ`NNM6x)@}ltlSyGdw`(@mM%Fyl3e*FmE zqP#)CNa%@naZ>62G~wInp&AO)!fi(gR#zY>SeV~ta|3L4qlQsIas(<^7av>6Lbz>`O zN|s|*|8D%DFFQ6!Ik?E8O7Hae%cisAhVmWFH+>T-tPz>~ygwelDB|?dHn{nMqQ|`w zzbh{x9C9GzH~Cq+`r+a?G^mg}R|s&%ELy6!ud{$8VYDi`zLu*vs4r{yzToWGsgv4j|p#-6A>6z`!tr%+Mg6(j|=`9RkuwC@Edi3KB|(fPe`4 zjlRC;ocH|yTHm*3tv&m>@9VDTxvo94Ham-fF~6cC!U3#?fTQ?@1b|WiWnE)SAs_$< z6cGRdh4I;bk%p=~PmC^S$P0S9P#!T>@d03k6c zA#o`n5FiW$O8yN*ct`ee1--q!1?=6B0)Ge( zCpm6DfHxH73@`#C!5&^g9Sr{qtn(Lu5AbJm073#n|4R2K`d1<-{CBWD2!wERw}<;e z;Z6Vu6b1(9tLX@!d{BGCe>;Dh z(K7`4yCd8I5cC+}Kqv%^{=)Z1+IxWkC=X9?p#Oh5{<*>z5&}3vK`4L&*a-^9|95t@ z84USrjXr-5s1Lvjh^C(q0Ql?kuRCir!yFNCnD4*gzmHf@&BDUeOoR8&$p3OGDIt6S z{`|s{0Deg^AV5e+NDLq@E`JIL{AV5md+47&{v%cs4nY7U|7sV#Pk*=U^@jsoe+0q} z_-8IX1e&>E0N1~X{tze%1fefN|7W`Y4*CDF{8yI$mFWN7k(wtA_S?_(7vTT#+q*$w zzJCyC=6a&gD$qrswE+Kbs5$sA>FRH~H(fTBRof3fB-yXh~z!Ju%k0RjpA^@Kr30fGPJLyHXLihhb9(bW9y0;4tb&$_B` z5W?}7*n~yJ0QMdp_P+S&vqrB(0sca0RXT!wev=s>C;&&G&>;ZyjDY|M!UO-;!2$t- zZcw-<@|P9=ADKa(9)BKanf;~!y6oTU-I^5-Dc*kX(BE2{Nr!kz> zwXT>X%l>Fl6vzBCe`g)sZ1w3!N_LJlG$T(97AhjA<^t$>4ll=j9=^#9S;^2SKw+r% zZzvt}7Y=bj+uVWvry?gs+P$@6HId}B6nKltb?7KOSxNY(R+4$>#U0oG{pK=9qjFB&2CgiE-wud&;K7 zUh9Z)KAd?}D*`L%#in8c;52kC|J0p9l$Bpt>R>K4$KgH>6S4U`NpoozpPeiuY@IF( zlNkK?TuICT#^gQ%F<-itNe7VAv6CBUV(GECta*;y<9`$Q`n(@nWx<>ZKih77+cDe| zb&Oy;WTc!9NwVn7-s{^s6u;N#`V<6A0* z`-vp=8-I5Vd%oSaNpkQw78J&_(JttE;A~f>$Ek(7p9F2*OS;}xvYZY%7N1)wQ2JpS zWJ_ND_+bGg{(HjLt+S@10t>~4=m)TvwC?Gk4cq6VjGYe#5*RXHPww}2a;9(jXf$1& zV;_?{4692GvWAzys+to;+m$~IP{x>A4cO~+oPV|AdGw4zn$Nxw2w7c7-`@;zx7lve zJ97VC`AA6xKt{~D5FshDQKK8oA?c4z5N#HuLikmJjL?3vDO7k4E`Z?-X~y4#$!jlB z742EEJ!y?4ZMaf*KR)ke_(0xX&mgEZ=m)yMDhXAS`0iyO^8TZsg}&HZUqwWB{o&)i zEq`nCNAxP8x@|bomiJf7P9s}Mi!2joM~f^BRF8FTgg0!3+wRu1RUkCd{qcpUeWqzC zhITo-J3MIvULgoC&#%n&m>G?-RntyN53<@4XE4vcbEIu#!kE>5QaudPA;mOu7J9*? zmhbSTv}PiZHws3md}$3REm`j2!V72cf`7~+!gwJQG`YHa2h0tD7chAS5YI|9>tT&e zkWuw#>q@uCO_F!evT*H6{h{du7R|eHFK1qU-=g_yMEb)PHDfNF)jj$pbI?

s}>_ zXS9rb=C0|pT>pTLuU`!V?L|JRmBX;oyG|v1u&e2Di>Fa38s>`SJvHmn4J=D$D}R$e z2$kE1DZt#pY%khN|Y?M`XJ!Gx=)|{SAJ!N!o+sjBf zeW3(9*HFb7pO$Dw!Im$7kZL5CxYL!4D&7GC+fvlLG_b*}Y{>Fn%qA~&)Ev_AbL9eE zh=lokPhyH43fVUvHZ{;}fcR^VSAUEl=^_XY$1H0*3J(PLz1}2FSQWN?Utnt0Vb?EI z*vrxgi%cbxSux;D(0V?y9ORWe%QwK*$m(obrYnEeuqVHk>drG4F78D%Pc6G_AcPFu zP$y1RDAr36wK*0^k1_ewAOUHQ1km{!mPUoO>2rrS5>^AnXFgA}6Ghw!SAQoczDhCj zdrp3O3fb|GnzSKRaejX$vsvVym9?&vKC(L(c=dWVqFu3Uj7_l=Am5z7GZn)h8>|pItHEW$_S+<2}N% zT4KT3zqo1{U)Y{`hBBOi7k>xyTE?oMp0sSCf@kKheP& zF?CTvZY_v2#vc^uA3ZfNq);%E!TW?E8%lKRrUGO??hYSX-e{cpIDhM3NvKy5igD!3 zj{H`+bDR&rXq#WtE2awF{8VkWv^hQ))@@&rZGE;aKg&med2r%@DuktGI+KVc|J0B6 z>ai`uG1?hzkW4ZL*kBnPuo${u+rq=?Kq$`0hX#!P~ zMvAYyG@Z)O{01P^g@5)yD0foo*eKk(`a_O`pSrR|%XWRnm{|NsiIKrJ z+vk=xsh^$ixQ99uRPQZpmpF1(_kQZ8=WlB!cq@z{NZ$`&|B?_Gwb)G`xA2~tz-=U= z_Q5q>Uy%-x#Kh~f#dy%jY10IPViB`CHb+OJL<@DP{!p$#l(*CAL=bAvB|l@EW;xD zE?o7@n=D@+s4d8BD+M-W?6@{8_u{S^9dIqpPS^-9u#*5W6|Zmh-NIjC#Eld0zyjRD z5HoN0EAG=8et&AGtO+ml%_9#;OC(P;T7u(mUK@RTm2+DBUMK#4X6TZW1a~q)vJrm&O~gRmZj2W;Xj} zHCDa68YUj94WT!u@LTaHusx9duFmSuS$TgX(n1$d%74{O)0EDsHB=z3D{3y6VR@ zZVIh1OhSB+rxaA)1`(Gw>VyTB9t|LviB&I4am6g zBc!pa*MCeN+D%3l<9E6xG0-2-T_WfB)5X^$J3geh$;@r=^V2ojM`fc<%EPqDr^!bP zuiLY4N&4M>^~oe!c_m1&5B0b`xj!@Vb{T?^=isSi+u}ntuJV&%+%-nW~eaEl&J>+1lWUK~p zB9Yjy?QQ7vA>KWgN63bpC{$oBHac&-XRn?>$1LXY+1sDjmu`dcxwl54@pbSBDo9?gA`xBUkadD9;n4-P{7Ga544AWyTxW9a6C^9KLz$iU;6w)pz za;>Twjdl4DR8@pW4+r{DSE|2YTw{I|(~`JnUtw;z!|oS8L!v}GLJ##On-zxQ9F=Lp@J=J%iDemsIYJWUcx{1wY3&`I?AWM4%WteokAJ0* zGI{S?g?m`OP^_3nT?OP|WZc8~CTbSG2bnUB-F;*b5_oYv9U%KNE*t%Srbkpiz@Qgr z8<{QnrHm;daPw0t4?ZKWle=OtUmf2Y*#MU+VNp`$p-}Ohud@UxM;WzEPZtGaYR=kwNe?@aCMG`^lkJ6rxd~u6{iutH{;%DXKVW@=)l70fgq=o$6D*Ie+8+0#_|Ti!T*F-8*YTndYePqO_8L9Lw%y?Pv)Zcp<+ zJeRXzdFz%A{xYmE4x=J6|9{CkZKkZTeVHfm&XsyL`L>MjWv-qlp?w?|T7`b{iz)}fvU-;hw>ll* zgpBe2kEk6ix#UNBQrNll4L0Sv1YDr!x zW1D9voQ#})7s)$+>dp)^tbLYh_&F;E+hMJoQqcYMR@3P-29wlBU20Pj*tS1r6-iUN z;d|tU?{I$>xoIc(bNETi%y#GFgt(n-SV6@{C#V|ta-VMd1Mi6atnTflA)iC zb3GBnldlkVqvg&YnSh+N)gGj;truPT-s9S+wPRoMucRj_W9cwt$`u51AXk0b&LCS# zRlL=+9#4)`SC6bvQ%g?z+6?iA&)KfnUdmF?eGHw?mEUz#5CL(MSc_EBWf1MoGR$JI z^XLX@F!a)8?SGWyODj7*U(38b zb7R+VpX2<)DTYiXuyl3xpw$MdG(Ws9!9gy17w4@ ziGinoG8M9;eWLEtApZ$3e_l;Rq3M&S^=e;DFAZ2X(v})$v0$NmYV!YaWK0VUk|12W+}HmD^B8RNHxBAwq~ip=pdBZwEjwC z(7)9?Y|zNYaw?mah!6i6n_Bt13=NgV6Eiw__Y+*-si$oe1}p4pvadpW1_zX)aLyOc z3)Qt341b&(9_uw)wPI@y+wMjOE8`uTQ2DJ)L+)(dk(tRzi@OfFWp^L_tE?(Cr^VTE zv-W|_F3{)>4sj^%QqaTlVA6FxVOL0z{VBpzOI#!`h-A0%#A|K0`z%O%+1x)@cVD%E-%zr6&V#+MY69o*`G^OPWSWJqe0Rneh zkW~9v=cd-1FTzq}rz~QB+`UN=ZG0UY>=CSslJk|VjpW$~aZtwUdTc}3iR!0U^r$a{ zaW-G}m!@Bz-g)1-D!}% zdVg=6p3&pgIdXjcRrzs)e79EEE5Q^sRxwk7I-uMZ4(1u}du_v+a3C$~@J!W|>|V$h zuW~w*alN% zX!eV_iUHrPPs4qwxF!X0%A(im9!~3~IDdU4qN8kyQBUJI0_qZ*x?}Mkr+-kd++2{z zf4WOpSc{|U^=XyMg&I{Bwy_Ez{4!Al|8kIHJ#O7^h&gIb6QRG5Oc(7&BoOyJq2~CG zkyRJ5>IUV3=D4I5z=`$p=Mj+`8OTk-ozCuPs%=Th_n^`il5mVo z^~XU2L@vV0ZdN59tMtX?LR`(STz^Z7DmpPoENVH!ULG=*Qsoj;_Q;r)y`0xume4^s zx-28-i9|@Es#IUfg*9qQPOpnY5CPVWNITs>ru)9;Le?4Pl<}S6FNM&I?B3xs zXR^IswF?d8m!vcl>?`@C+W-#EmtS}@IJ7%m*K~`CWZ!uc%R08y;kf(G&CaXcD%)LQ znW@XMi~(M3l6@3IPi39eM1O95G_6+Qj|zQ-Vs_nR&Crz{LR4wff)`F$SueQOJ!tfZvbmqih)vQ&V7T$EOgS6#n?E2+B*GfkqTy_*yBL-&-+b?__bIQz z9#$z8!*;1Jx@xc)?%iuU8KVk}Wzk*{iJ2T>wfQvl&FRq(Nnkxhb%0CSomKY7Fa$I& zkmIV3JeXA;*$df-y?>+s?aQ7W*)U$2drGE%>uR~C7`1YS_Kh-@pm$xK8wGCF`(fjE zY%dJIGfgS$oE4oWw^I3Jdf)ljRmvEl*1D2&n}hH%Yxt&Ws@zy)K(n+RHgP|J*LU_y z=A~K_s{_y+j`dL}7&Det{i!LPOZ;jTPPlLEG0MwlR?5@SFn^iK^MS7|#Y+=M*3`=9 z4!m1$^dqeoV6{FUImNtBHpDDmDwA}pXfx^K(!Pm;tLnmr z*1w|jq}OrD9(AG2ipN);64s3!XBRp-W~w1{Ygx}lR!i1EHpGt0``VsLEoD#W|Lh5H zpcgCY5DjB~e#e{|!*@1ZCI_=A9}j<9CemSPa84q$bq8%NByLJoi;cS0yHx+Zu>8$9 zyY+h$7p=%V16Rqg8CMFifAXJaF#LVpIRHJ+?f0UFKfanReZTi~A{F z(HPr$@ytoOdp>W@BrRK=STl!w@ZdCED}=8!P=?Go^q>Ka1+PUQEJx;D_g^?41n>&K z@x}0m7YfO!|4y#+sic7)Ek$E!(77#TJ02T7qSs788sP8J6VNSQbtCQ4?-7G2_5qGn zl&nu@|J3m%@e8k3R0vZ{<+9}zJFD^M#`;ipJBejCBe=CY2~3(4c+KKEvg24e4#obH zyKh`F_x8!}^I2ol6>rtUBNzKqY1^V?!r{-eFdtT;FCV`~jD8k@;mj7rMD*VB?-Ba< zVlf5qQNT&^qiu`A!unID7+Me9=dMD^jec8n_p>s3i&<_`wm(6&HW@Y2M1?$<@I=Xh zfedl|u`s9kmzJdBCUWy38-~Fv>wlGp$tUXi)(4BKlG9YbJ6bMO@5U%?oW;Bf6&*_q zbop*||JAMlht;3RoOJF7t6nJ%AD@+Dh21XJ@6G{Jv;3$d@zPe+nntk}f8^CXQ^LIx zyfi^`gSou`Jnc0@zWCB8mCU{(^}HOqG#uc>AG|5SRh5!u)x}^+g0K>)F!rYDZlQjw z+M+=|;X@o7Ho8{(OuV6^KB}d)dzi~3mD;J6y9C27GCDG!7s1a7Ny&6Vr)M?ya4oJD z0k@s;>|1woN3b+88msRof(v)!51ZCP`|wT{BBVm}R3o<;0xXS+wd^zMndJy6+MhhQ zw{cDv9}fYdXEjQ0{{;bJ9&3UPi$(<7cdi z(R|%6FruOK-BQoUVwuLG3#-&`2RaOf_Jo#CXABAGCKnie<%uihOwMKJg!iizs{FN9 z<+O;+RikW;wLCsi7$%&Y`{5A_haZlcvK;dX{Z77N+~%MehBs<3B1N2{qAL>xY4+Pm zac=H=>^v_x`5fhvC}oL&aM0a-VmJ}oO}i%o(7{`6U^u;}z`K4@I-W6Jx*wX{$(*vC zWJh2(Jw>(L8;PNci|ND5oYPHZTG|-eTQ{tPZao39-CB}wK0mncP1G^uD7Hifc_fuY z7IdKEN_YDQbCg@`MPYG;Ad&BYf+!yu)#;v4SiLhK8uLs!ZL*35pF^s|U)YTaR@e#^9p02h4=meG)_Uo++v_Hf)YWun z6W0v!d9>Y+Nj!bfz;i#78d9%|(|vi8E@sVmi{cSOX)9WLCUgg#uoXS(n%04@GTFeQ zBabtVa|$jG_wmNr6#i%(8a70cxP4~AmdX~k9UE`DpIKO$^RDV^Rmfp)Jyy?}2kK(m7o*U_FPutEg z6I7BrJjS4@q@PB{ZpB29lI}O0n5;i`4{djPJvOJ+>hEAPSJCk<=^5RZY-p-v>Q5z( zuXfGd!bW9JDYNETxo`<~*4q+J` zML{OEdDbcK{py`ree<^()q9E$9$tN0_qt41UGX|D#4&AA#x?E<4TMbhlw0PVVmqxh z`*#@bbv&9sR=0Iua4iD_U0=WJ)^7w9OOG}nUpyNzScSb)h1RZjN9|BpL0jbUrmX5% zyg1_m&>Wwy^}u(veJyR@sVBcCzShyJ*5fa;)H!lPz;dE#wY(>jEebunk#3+QXtZUh zzfwh%{?~B5F01y6<(IyK!On$f-Zhpmf@pQI(%6fZ3(XF-EF3<0kLU{ZL~Xdz`uK1e z)lPodj9o1yzUo;0Ak1!nYwF9A`+T~44EwYP;9qeHcd5OKT|9I5>#RQM8ehY62io?Y z?po9!>U@R-#mr&%$S1~sY{)=tTKj&|cA+BoZqeB%zM7YXlOn1AE`FkqU3yMoN_HJs zQ91kRnCc%sH+hNp5PnD!wIRb{Ix_oISyD4EJH|;~>{4$5z}FJ9XF@AB6DPelwYQd0kIj!t z)fBTU%dOj9>K)Ar4@3zf9J@~q-5me-~1 z2e2X8tqgA25Dx9}9e5|#^RCw@+n{dXx2?%2A-Ml2W2x3Q1K`0-j^-Mc^ra6O^B6+$X`{de!2R+^zIV zRNrxdH)W=i&wVqc%-orY7Vg$E4p2{%~O+kN&3o?6VYM*F5d1?{WZ z$$l}mWG-}m&issR)X@Huk)OytW-TP5Sf& z@mK<1Gt88A51dduR_ojv`_-8%T*R+ZTJT{OTVaw;m+Obyd+u47@F&s$qR<0P^!*_N zZQ+|hIOQ zVR|TdX*gfbPPDbw#aaR+_I#}HsDQ)g5MEVJ+)`SjBt3>_^(Qj){dZ0(`g@sok2e`> zCS%P=JoVl&x?L#1{M?Hbf3_HIQqNE9PSC@={&Z=w8TI^wV`UWg6!gz#MKTbqT^XCV zCpwlU|LOLuH(uAB+nt>@IS|}vKuw)0$dA`wnOir-J@%G!AkPC%bUku)=|6IW?}0Yz z(lT{fK6;Hjm_1Ld;A^%lzwk_F*M9g4@PJ-rDiP|DeDYz5xWAE_LGD ze{vko>8&pxIi|fZOg}MU8@cJM@Yu*NvelsW)*@Rz#g!PS)`zD2sM=6v@u*v@;`lVo>vA+i2{Ng$YVzfGRF$wB>&I zT^og_UqgBgmJhi`D!CJ)Si{kH9$=TnqJ^=AIb(y2icOU=>!IQ=At6O_jFA4A#0y%* zE1Mrm1(nmUYsR<;A!l2sUk{Q&o4+Ld8oL?y#$Ov8BvAuN?!Q)3SnKoa)4NkaJ^g6Y zK3V=+kMT7*YqvOXOITA(WcynrgNrAXIXQM{W?dRu6P{U4vx5$o@_di9F3y*uCCl(G z6sSkm3^`+N5YHv7oNycpIUua{$|_`&BX$#VrutRBQZ!f2%c*fK+83t3dh-*DNZWP$ z(iep6=LO&e>7Hs5qi$ATV`j^T8rBZ`UnOF@f+?`- zoYS>f21?!?%vnls9CiVfVP(nxAUx>LmWOhW@*6;D78yvx)cq$Y*BDF6Ov@>M=dmseK%3T@Qzq@CGWE7pI^eb@zPkQWTi_CS8;ah% znmsTBz0QFpmBhQgBthc2bfmc`z+4h38hm9~`dCHOax-^@o0UI*Y;Ps@>c*RBBD4Q8 zvHwo8fQn-#Tam(GDKJz5CJ7N1hwzJw^9xdl>H9dT+50<#1k_|9;$UfU$^W!qP;C`= z!4zT|ZZG`&K@f<bGf_-$vCvc=EfqhVPO_1qHQ*Dx>wuh|@dY zc5n5))ut9SFcoa-G+=SlHkBLADDBf?|7Ds~yT%cH`-Dm9KA!?rJMJhkfzKIG7=$l5 zu@u_tZE3A$k4AKgNj-^Fi25dOzf7Vw6D+`=|MWKO{Ff(`7h6z)xp716d1tRk>=N2g zDAuNh2h8`}D(sUMm0NPe-rZQk?^dHFW`xE5MkqR zpeM!2<+*Om(p-~8BI^kh#9p@Nwg9ziaSy1}i}f-20q~?XRl~Lw*UO zs%N>J`b&?Jzb)*}_8vPtHfcn0ulU3DdvbDakD$02Y&(vTArGb~lgxoZ9P7X|0orhE zMD;DJ3;KbBcIJn{DD=&RGxWKU!>d5VY|MnJXV)W1w$vBJ58ji{`kX1GTf(4mW$3)8$HF( zkHYs?hWh#tyax^+huy2N-Pv9x+;eoAGdWBJF<xPMfKx-ok*|eU1#Vh3nN+l%~&! zbPggg|L^)4Ul!}w)Vk+=&?~#S=vf~vFCP5a(@B9l4Si`=ox^H^EW>ht4PU9wc)i?f zt-PC{$Z-Ynp3X;O3>8>YK4*1yl{8yX9Q3fH{ib`kx_pA7#1BrlbecElBn)2C-fhTD zc0znIcK(r@%%K7}`#(QF`Yrr)8pEtsXh0cq=_0P3<;0cI`dME}gQIif{CvAE&`zS| zN7~)!O#$8a=#@r%*-6A4Iwd^?ad)0&-MYD}=U&I=>fgWL8pl{yzXv7g%=BpG`cWZo zP*EZwpQHrbn$=^q&rwVb`YMy&4E^eKQ!5(AUR5l)EJIPiJB1fwO`=8D-#&OETPs`g z(39ZDZD}4Ue*H#CdDcv`n`e4+zHt%NZRL(122h4k-vV2uceyF)PnB&@N2-@gr*jk# zwAF3`L?|`j+wX`QW$2R&My_Lz=M!_|@&yVR)kPzLxJC}&Drv* z^+}COQnPKq2I{_rGfLHGkzcO&RND#nmD%m^X0KdxYm`@DrF3<(hUum68p`@>6jr`3 zQ6BPV{}a@?y5#sg+S;$gLI z2j&VzrE(xemOAz7yhbC7;kg`SV(^;8311Jh(U4*;zHCB%QO@pEXETt0!i3Itd;bKN z&dMwCx9QgUw%b!<-ub#8N~czlVgH99f-$~5oB+g{LhPwqh%*QZp%60zS%N_j5cs-g zU@4fgx-] (8,\y) -- (8,\y+0.9); - \draw (8,-0.2) node {$n_1$}; - \draw (-0.2,6) node {$n_2$}; - \draw (4,-0.5) node {step of path 1}; - \node[rotate=90,anchor=south,xshift=3cm,yshift=0.5cm] {step of path 2}; + \draw(-0.1,-0.4) node {$b_1\land b_2$}; + \draw(8,-0.4) node {$\mathbf{1} \land b_2$}; + \draw (-0.2,6.3) node {$b_1\land\mathbf{1}$}; + \draw (8.2,6.3) node {$\mathbf{1}$}; + + \draw (4,-0.5) node {$\to$ steps of $\xi_1$}; + \node[rotate=90,anchor=south,xshift=3cm,yshift=0.5cm] {$\to$ steps of $\xi_2$}; \draw[fill,red] (0,0) circle (0.08); + \draw[fill,red] (8,0) circle (0.05); + \draw[fill,red] (0,6) circle (0.05); \draw[fill,red] (8,6) circle (0.08); \def\x{5}; diff --git a/main.tex b/main.tex index de43fef3939747b2ed9a2620bf3de3a12122e15f..6cf2e851f04da8964d15316dda774f132d7c905f 100644 --- a/main.tex +++ b/main.tex @@ -57,6 +57,7 @@ \newcommand{\diam}[1]{\mathcal{D}\left(#1\right)} \newcommand{\paths}[1]{\mathcal{P}\left(#1\to\mathbf{1}\right)} +\newcommand{\gapsum}[1]{\mathrm{gapsum}\left(#1\right)} \long\def\ignore#1{} @@ -147,7 +148,9 @@ 8 & 0 & 1 & 2 & 3+2/3 & 6.44 & 11.0 & 18.7 & \cellcolor{blue!25}31.44 & 52.08 & 84.95 & 136.0 & 213.6 & 328.9 & 496.5 & 735.6 & 1070.7 & 1532.5 & 2159.5 & 2998.8 & 4108.1 & 5556.7 \\ 9 & 0 & 1 & 2 & 3+2/3 & 6.44 & 11.0 & 18.7 & 31.44 & \cellcolor{blue!25}52.30 & 86.27 & 140.7 & 226.3 & 358.4 & 558.4 & 855.4 & 1289.0 & 1911.5 & 2791.4 & 4017.2 & 5701.4 & 7985.9 \\ 10& 0 & 1 & 2 & 3+2/3 & 6.44 & 11.0 & 18.7 & 31.44 & 52.30 & \cellcolor{blue!25}86.49 & 142.1 & 231.6 & 373.4 & 594.8 & 934.4 & 1447.1 & 2209.0 & 3324.6 & 4934.8 & 7226.9 & 10447. \\ - \end{tabular} + \vdots \\ + 15& 0 & 1 & 2 & 3+2/3 & 6.44 & 11.08 & 18.76 & 31.45 & 52.31 & 86.49 & 142.33 & 233.31 & 381.17 & 621.02 & 1009.38 & \cellcolor{blue!25}1637.13 & % 2650.74 & 4285.68 & 6913.55 & 11171.2 & 18052.2 + \end{tabular} } \end{table} @@ -161,7 +164,7 @@ \item $\forall k\in\mathbb{N}, \forall n,m\geq \max(k,3) : a^{(n)}_k=a^{(m)}_k$ \label{it:const} \item $\exists p_c=\lim\limits_{k\rightarrow\infty}1\left/\sqrt[k]{a_{k}^{(k+1)}}\right.$ \label{it:lim} \end{enumerate} - We also conjecture that $p_c\approx0.62$, see Figure~\ref{fig:coeffs_conv_radius}. + We also conjecture that $p_c\approx0.61$, see Figure~\ref{fig:coeffs_conv_radius}. \begin{figure}[!htb]\centering \includegraphics[width=0.5\textwidth]{coeffs_conv_radius.pdf} @@ -269,13 +272,13 @@ and indeed the lowest order is $\diam{C}=9$. ~ -A weaker version of the claim is that if $C$ contains a gap of size $k$, then the sum is zero up to and including order $p^{k-1}$. +A weaker version of the claim is that if $C$ contains a gap of size $k$, then the sum is zero up to and including order $p^{|C|+k-1}$. \begin{claim}[Weak cancellation claim] \label{claim:weakcancel} For $C\subseteq[n]$ a configuration of slot positions, the lowest order term in \begin{align*} \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)} , \end{align*} - is at least $p^{\mathrm{gap}(C)}$ when $n$ is large enough. Here $\mathrm{gap}(C)$ is defined as in Figure \ref{fig:diametergap}, its the size of the largest gap of $C$ within the diameter of $C$. All lower order terms cancel out. + is at least $p^{|C|+\mathrm{gap}(C)}$ when $n$ is large enough. Here $\mathrm{gap}(C)$ is defined as in Figure \ref{fig:diametergap}, its the size of the largest gap of $C$ within the diameter of $C$. All lower order terms cancel out. \end{claim} This weaker version would imply \ref{it:const} but for $\mathcal{O}(k^2)$ as opposed to $k+1$. @@ -338,13 +341,23 @@ The key ingredient of the proof is the following claim: \begin{claim}[Sum of expectation values] \label{claim:expectationsum} When $b=b_1\land b_2\in\{0,1\}^n$ is a state with two groups ($b_1\lor b_2 = 1^n$) of zeroes with $k$ $1$s inbetween the groups, then we have $R_b(p) = R_{b_1}(p) + R_{b_2}(p) + \mathcal{O}(p^{k})$ where $b_1$ and $b_2$ are the configurations where only one of the groups is present and the other group has been replaced by $1$s. To be precise, the sums agree up to and including order $p^{k-1}$. \end{claim} - -For example for $b_1 = 10111111$ and $b_2 = 11111000$ we have $b=10111000$ and $k=3$. The claim says that the expected time to reach $\mathbf{1}$ from $b$ is the time to make the first group $1$ plus the time to make the second group $1$, as if they are independent. When going up to order $p^{k}$ or higher, there will be terms where the groups interfere so they are no longer independent. +\textbf{Example}: For $b_1 = 0111111$ and $b_2 = 1111010$ we have $b=0111010$ and $k=3$. The claim says that the expected time to reach $\mathbf{1}$ from $b$ is the time to make the first group $1$ plus the time to make the second group $1$, as if they are independent. Simulation shows that +\begin{align*} + R_{b_1} &= 1 + 3p + 7p^2 + 14.67p^3 + 29p^4 + \mathcal{O}(p^5)\\ + R_{b_2} &= 2 + 5p + 10.67p^2 + 21.11p^3+40.26p^4 + \mathcal{O}(p^5)\\ + R_{b} &= 3 + 8p + 17.67p^2 + 34.78p^3+65.27p^4 + \mathcal{O}(p^5)\\ + R_{b_1} + R_{b_2} &= 3 + 8p + 17.67p^2+35.78p^3 + 69.26p^4 +\mathcal{O}(p^5) +\end{align*} +and indeed the sums agree up to order $p^{k-1}=p^2$. When going up to order $p^{k}$ or higher, there will be terms where the groups interfere so they are no longer independent. ~ \begin{proof} -Consider a path $\xi_1\in\paths{b_1}$ and a path $\xi_2\in\paths{b_2}$ such that $\xi_1$ and $\xi_2$ are independent (Definition \ref{def:independence}). The paths $\xi_1,\xi_2$ induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ different paths of total length $|\xi_1|+|\xi_2|$ in $\paths{b_1\land b_2}$. In the sums $R_{b_1}$ and $R_{b_2}$, the contribution of these paths are $\mathbb{P}[\xi_1]\cdot |\xi_1|$ and $\mathbb{P}[\xi_2]\cdot |\xi_2|$. The next diagram shows how these $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths contribute to $R_{b_1\land b_2}$. At every step one has to choose between doing a step of path 1 or a step of path 2. The number of zeroes in the current state determine probabilities with which this happens (aside from the probabilities associated to the two original paths already). The grid below shows that at every point one can choose to do a step of path 1 with probability $p_i$ or a step of path 2 with probability $1-p_i$. These $p_i$ could in principle be different at every point in this grid. The weight of such a new path is the weight of the path in the diagram below, multiplied by $\mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]$. By induction one can show that the sum over all $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths in the grid is $1$. Hence the contribution of all $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths together to $R_{b_1\land b_2}$ is given by +Consider a path $\xi_1\in\paths{b_1}$ and a path $\xi_2\in\paths{b_2}$ such that $\xi_1$ and $\xi_2$ are independent (Definition \ref{def:independence}). The paths $\xi_1,\xi_2$ induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ different paths of total length $|\xi_1|+|\xi_2|$ in $\paths{b_1\land b_2}$. In the sums $R_{b_1}$ and $R_{b_2}$, the contribution of these paths are $\mathbb{P}[\xi_1]\cdot |\xi_1|$ and $\mathbb{P}[\xi_2]\cdot |\xi_2|$. The next diagram shows how these $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths contribute to $R_{b_1\land b_2}$. At every step one has to choose between doing a step of $\xi_1$ or a step of $\xi_2$. The number of zeroes in the current state determine the probabilities with which this happens (beside the probabilities associated to the two original paths already). The grid below shows that at every point one can choose to do a step of $\xi_1$ with probability $p_i$ or a step of $\xi_2$ with probability $1-p_i$. These $p_i$ could in principle be different at every point in this grid. +\begin{center} +\includegraphics{diagram_paths.pdf} +\end{center} +The weight of such a new path is the weight of the path in the diagram, multiplied by $\mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]$. By induction one can show that the sum over all $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths in the grid is $1$. Hence the contribution of all $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths together to $R_{b_1\land b_2}$ is given by \[ \mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]\cdot(|\xi_1|+|\xi_2|) = \mathbb{P}[\xi_2]\cdot\mathbb{P}[\xi_1]\cdot|\xi_1| \;\; + \;\; \mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]\cdot|\xi_2|. \] @@ -367,20 +380,20 @@ where the sum over independent paths could be empty for certain $\xi_1$. Now we \end{align*} we can do the same with the second term and this proves the claim. \end{proof} -\begin{center} -\includegraphics{diagram_paths.pdf} -\end{center} -\textbf{Proof of claim \ref{claim:weakcancel}}: Say we have a group on the left with $l$ slots and a group on the right with $r$ slots, with enough space between the groups. Then on the left we have strings in $\{0,1'\}^l$ as possibilities and on the right we have strings in $\{0,1'\}^r$. The combined configuration can be described by strings $(a,b)\in\{0,1'\}^{l+r}$. Such a configuration has probability $(-1)^{|a|+|b|} p^{r+l}$ in $\rho$ and by claim \ref{claim:expectationsum} we know $R_{(a,b)} = R_a + R_b + \mathcal{O}(p^\mathrm{spacing})$. The total contribution of these configurations is therefore +~\\ +\textbf{Proof of claim \ref{claim:weakcancel}}: We can assume $C$ consists of a group on the left with $l$ slots and a group on the right with $r$ slots (so $r+l=|C|$), with a gap of size $k=\mathrm{gap}(C)$ between these groups. Then on the left we have strings in $\{0,1'\}^l$ as possibilities and on the right we have strings in $\{0,1'\}^r$. The combined configuration can be described by strings $f=(a,b)\in\{0,1'\}^{l+r}$. The initial probability of such a state $C(a,b)$ is $\rho_{C(a,b)} = (-1)^{|a|+|b|} p^{r+l}$ and by claim \ref{claim:expectationsum} we know $R_{C(a,b)} = R_{C(a)} + R_{C(b)} + \mathcal{O}(p^k)$ where $C(a)$ indicates that only the left slots have been filled by $a$ and the other slots are filled with $1$s. The total contribution of these configurations is therefore \begin{align*} - \sum_{a\in\{0,1'\}^l} \sum_{b\in\{0,1'\}^r} (-1)^{|a|+|b|}p^{r+l} \left( R_a + R_b \right) + \mathcal{O}(p^\mathrm{spacing}) - &= p^{r+l}\sum_{a\in\{0,1'\}^l} (-1)^{|a|} R_a \sum_{b\in\{0,1'\}^r} (-1)^{|b|} \\ - &\quad + p^{r+l}\sum_{b\in\{0,1'\}^r} (-1)^{|b|} R_b \sum_{a\in\{0,1'\}^l} (-1)^{|a|} \\ - &\quad + \mathcal{O}(p^\mathrm{spacing})\\ - &= 0 + \mathcal{O}(p^\mathrm{spacing}) + \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)} + &= \sum_{a\in\{0,1'\}^l} \sum_{b\in\{0,1'\}^r} (-1)^{|a|+|b|}p^{r+l} \left( R_{C(a)} + R_{C(b)} + \mathcal{O}(p^k) \right) \\ + &=\;\;\; p^{r+l}\sum_{a\in\{0,1'\}^l} (-1)^{|a|} R_{C(a)} \sum_{b\in\{0,1'\}^r} (-1)^{|b|} \\ + &\quad + p^{r+l}\sum_{b\in\{0,1'\}^r} (-1)^{|b|} R_{C(b)} \sum_{a\in\{0,1'\}^l} (-1)^{|a|} + + \mathcal{O}(p^{r+l+k})\\ + &= 0 + \mathcal{O}(p^{|C|+k}) \end{align*} where we used the identity $\sum_{a\in\{0,1\}^l} (-1)^{|a|} = 0$. +\newpage \subsection{Sketch of the (false) proof of the linear bound \ref{it:const}} Let us interpret $[n]$ as the vertices of a length-$n$ cycle, and interpret operations on vertices mod $n$ s.t. $n+1\equiv 1$ and $1-1\equiv n$. %\begin{definition}[Resample sequences]