From b0265ec2951b4f4f193685404276946f1850e726 2017-09-07 12:05:29 From: Tom Bannink Date: 2017-09-07 12:05:29 Subject: [PATCH] Add small proof fixes --- diff --git a/main.tex b/main.tex index 23e4e6342b921b79bae49f773187e43289ab488e..c2bb29cc162f53da2c1a65f46e2d5927464c234a 100644 --- a/main.tex +++ b/main.tex @@ -706,13 +706,27 @@ The intuition of the following lemma is that the far right can only affect the z $R^{(n)}-R^{(m)}=\mathcal{O}(p^{\min(n,m)})$. \end{theorem} \begin{proof} + Some notation: let $P$ be an interval $[a,b]$. We say $P$ is a \emph{patch} when the $\Z{i}$ event holds for all $i \in [a,b]$ and $\NZ{a-1}$ and $\NZ{b+1}$ holds. We denote this event by $P\in\mathcal{P}$, so + \begin{align*} + P\in\mathcal{P} \equiv \NZ{a-1} \cap \Z{a} \cap \Z{a+1} \cap \cdots \cap \Z{b-1} \cap \Z{b} \cap \NZ{b+1} . + \end{align*} + Note that we have the following partition of the event $\Z{v}$ for any vertex $v\in[n]$: + \begin{align*} + \Z{v} = \dot\bigcup_{P : v\in P} (P\in\mathcal{P}) + \end{align*} Let $N\geq \max(2n,2m)$, then \begin{align*} - R^{(n)} &= \\ - &= \frac{1}{n}\sum_{v\in[n]}\sum_{t=1}^{\infty}t\cdot \P^{(n)}(v \text{ is resampled in }t\text{ times})\\ - &= \frac{1}{n}\sum_{v\in[n]}\sum_{t=1}^{\infty}\sum_{P\text{ patch}}t\cdot\P^{(n)}(v \text{ is resampled in }t\text{ times and }P\text{ is a patch})\\ - &= \frac{1}{n}\sum_{P\text{ patch}}\E^{(n)}(\# \text{ resamples in }P|P\in \mathcal{P})\\ - &= \sum_{s=1}^{n-1}\E^{(n)}(\# \text{ resamples in }[s]|[s]\in \mathcal{P})+\mathcal{O}(p^{n})\tag{by translation symmetry}\\ + R^{(n)} + &= \frac{1}{n}\sum_{v\in[n]}\E^{(n)}(\text{\# resamples of } v) + \tag{by definition}\\ + &= \frac{1}{n}\sum_{v\in[n]}\sum_{t=1}^{\infty}t\cdot \P^{(n)}(v \text{ is resampled }t\text{ times}) \\ + &= \frac{1}{n}\sum_{v\in[n]}\sum_{t=1}^{\infty}\sum_{P\text{ patch}}t\cdot\P^{(n)}(v \text{ is resampled }t\text{ times and }v\in P\text{ and } P\in\mathcal{P}) + \tag{partition}\\ + &= \frac{1}{n}\sum_{v\in[n]}\sum_{t=1}^{\infty}\sum_{P\text{ patch}}t\cdot\P^{(n)}(v \text{ is resampled }t\text{ times and }v\in P | P\in\mathcal{P}) \; \P^{(n)}(P\in\mathcal{P})\\ + &= \frac{1}{n}\sum_{P\text{ patch}}\E^{(n)}(\# \text{ resamples in }P|P\in \mathcal{P}) \; \P^{(n)}(P\in\mathcal{P})\\ + &= \sum_{s=1}^{n-1}\E^{(n)}(\# \text{ resamples in }[s] \;|\; [s]\in \mathcal{P}) \; \P([s]\in\mathcal{P}) +\mathcal{O}(p^{n}) + \tag{by translation symmetry}\\ + &= ???? \\ &= \sum_{s=1}^{n-1}\E^{[0,s+1]}(\# \text{ resamples in }[s]|[s]\in \mathcal{P})\P^{[s+1,n]}(\NZ{s+1}\cap\NZ{n})/(1+p)^2+\mathcal{O}(p^{n}) \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\ &= \sum_{s=1}^{n-1}\E^{[0,s+1]}(\# \text{ resamples in }[s]|[s]\in \mathcal{P})\left(\P^{[s+1,n]}(\NZ{s+1})\right)^2/(1+p)^2+\mathcal{O}(p^{n}) \tag{by Lemma~\ref{lemma:independenetSidesNew}}\\ &= \sum_{s=1}^{n-1}\E^{[0,s+1]}(\# \text{ resamples in }[s]|[s]\in \mathcal{P})\left(\P^{[s+1,N]}(\NZ{s+1})\right)^2/(1+p)^2+\mathcal{O}(p^{n}) \tag{by Corollary~\ref{cor:probIndepNew}}\\