From b43c29412d5dea02928ebef3b0fc35a50080d892 2017-05-29 08:51:35 From: Tom Bannink Date: 2017-05-29 08:51:35 Subject: [PATCH] Add note on probability independence claim --- diff --git a/main.tex b/main.tex index 5c6414dbface5eab59263ce53252227058cd85a8..b826b535b105828b8fda669d5ff0bf40f744870d 100644 --- a/main.tex +++ b/main.tex @@ -414,6 +414,12 @@ The proof of claim \ref{claim:expectationsum} also proves the following claim \end{align*} up to any order in $p$. \end{claim} +Since the left hand side is defined as +\begin{align*} + \mathbb{P}[\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2} |\;\text{start in }b] + = \sum_{\substack{\xi\in\paths{b}\\j_1,j_2 \text{ not 0 in } \xi}} \mathbb{P}[\xi] +\end{align*} +we see that all such paths $\xi$ can be split into paths $\xi_1\in\paths{b_1}$ and $\xi_2\in\paths{b_2}$ and by the same reasoning as in the proof of claim \ref{claim:expectationsum}, we obtain the right hand side. \newpage \subsection{Sketch of the (false) proof of the linear bound \ref{it:const}}