From d4a402112276a4a8bc3d392aeecf38168cf572b4 2017-07-11 14:50:52 From: Tom Bannink Date: 2017-07-11 14:50:52 Subject: [PATCH] Fix typo --- diff --git a/main.tex b/main.tex index a5a24ca064848bb9e28f2e6bf2cd8d27bdba4b88..9b934ebb3039d29eee602ca1fc2a64e9e9268da9 100644 --- a/main.tex +++ b/main.tex @@ -271,7 +271,7 @@ We can further rewrite the sum over $b\in\{0,1,1'\}^n$ as a sum over all slot co where $C(f)\in\{0,1,1'\}^n$ denotes a configuration with slots on the sites $C$ filled with (anti)particles described by $f$. The non-slot positions are filled with $1$s. \begin{definition}[Diameter and gaps] \label{def:diameter} \label{def:gaps} - For a subset $C\subseteq[n]$, we define the \emph{diameter} $\diam{C}$ to be the minimum size of an interval $I$ containing $C$. Here we consider both $C$ and the interval modulo $n$. In other words $\diam{C} = \min\{ j \vert \exists i : C\subseteq [i,i+j-1] \}$. We define the \emph{gaps} of $C$, as $I\setminus C$ and denote this by $\gaps{C}$. Note that $\diam{C} = |C| + |\gaps{C}|$. Define $\maxgap{C}$ as the size of the largest connected component of $\gaps{C}$. Figure \ref{fig:diametergap} illustrates these concepts with a picture. + For a subset $C\subseteq[n]$, we define the \emph{diameter} $\diam{C}$ to be the minimum size of an integer interval $I$ containing $C$. Here we consider both $C$ and the interval modulo $n$. In other words $\diam{C} = \min\{ j \vert \exists i : C\subseteq [i,i+j-1] \}$. We define the \emph{gaps} of $C$, as $I\setminus C$ and denote this by $\gaps{C}$. Note that $\diam{C} = |C| + |\gaps{C}|$. Define $\maxgap{C}$ as the size of the largest connected component of $\gaps{C}$. Figure \ref{fig:diametergap} illustrates these concepts with a picture. \end{definition} \begin{figure} \begin{center} @@ -345,7 +345,7 @@ By $R_{101}$ we denote $R_b(p)$ for a $b$ that consists of only $1$s except for With this we can write a recursive formula for the expected number of resamples from $101$: \begin{align*} R_{101} &= (1-3p+3p^2 - p^3)(1) + (3p -6p^2 +3p^3) (1+R_{101}) \\ - &\quad + (p^2 - p^3) (1+R_{10101}) + (2p^2-2p^3) (1+R_{1001}) \\ + &\quad + (p^2 - p^3) (1+R_{10101}) + (2p^2-2p^3) (1+R_{1001}) + p^3(1+R_{10001}) \\ &= 1 + 3 p + 7 p^2 + 14.6667 p^3 + 29 p^4 + 55.2222 p^5 + 102.444 p^6 + 186.36 p^7 \\ &\quad + 333.906 p^8 + 590.997 p^9 + 1035.58 p^{10} + 1799.39 p^{11} + 3104.2 p^{12} \\ &\quad+ 5322.18 p^{13} + 9075.83 p^{14} + 15403.6 p^{15} + 26033.4 p^{16} + 43833.5 p^{17} \\