From fd8b2cc696df958d8cfbbfbd6e94255e5c442991 2017-06-01 22:35:43 From: Tom Bannink Date: 2017-06-01 22:35:43 Subject: [PATCH] Add diagram for lemma 12 --- diff --git a/diagram_proborders.pdf b/diagram_proborders.pdf new file mode 100644 index 0000000000000000000000000000000000000000..de45a653625f8c06b5266ec8eeb3e1226acf2ad6 GIT binary patch literal 44717 zcma&NW2`Vd)ULU0+qP{#+qP}nwr$(CZQHhO?|ILcIg?E0{Fwe)O`AJun>OptwMr^4 zEK18r#|lL{zdW)I#X-P8U}tCv#lr(dFKuFL=4?*D%*Mz@@IMWTUevxRW!A#7&C?r#T5`}gGj#P>5P9nLWS&u3Rxx-kq|B5#e~jvk*K?`+6p z?@h~SQEYbf>n3dJdF;mc;Q(R-j9H#h{ew?CHqPyK6Mx`~V&8VrAi~<|R({f5;B&9e zS?^B+yHl>Jn^7rE{rAn25PApGP(JwB+uR6SzlAT+RRhcbMB5-57Y$9dMbz8@7B7ac zxrMMcZ2)BFPpIhEDPsD0?#uZt_6^mG?HWuilslT??@O8i_I^%qb1adT)fMMyi1g%e z*F(4cuGRpMB)1^e=a4lKnWFHG>_I!fKeE(793`6Edm z3eZe2$eSmT@G$BsDY>?$G(iI&+21L+0-4kl+8AHxJ{6P+&^>MYpcxq3>sU#dJmG4IwfDBy zEzk!OG^oEfT;nY@LS7bjusS_3zlGO2a`a)UcIO~Q7_jzgOJprF)R{(sqF+#kl^X05 zd3xHQ`$aGvME)li>RMk>(TuiWkezAeq4Nz;h9XYlEgCx_fXY3k z09{;K(qG@%9k5eaE#1=ag@lxG-83gAEP$MFPaFE5 zb(|N5lm<%7%g7;%zH$X%&QMZHmW2wyLIGC?{jZ%Qq`F4MaGeW*9cd|_MtpCtxuKWw zRjxN|2hwB~b>ZW-9>p4&CsmMfO3u(1DVgUYCj=CD@uI2^k}%mw8yL;4?f@~}xx(E> zGw7kl9x>wa9CK|gNCam;35?*EJ2>R)a<7tdT3yKL#WF! z^}wYiEiXGu^Rd0+@uJY`9K~K%w9;4h2!BqZ?ji0$oQyvKi^lb=IU1H;f>{3;sw^jJ zWLysOsfm&mmEmBnPFk48p5EBL&;M@@9Q)lcLNaTkh!yOJZ{U5mO|zS z^9mNBl*y2Q24)j*oyyup28PRBh8d#9ksD@W6b#F=bu%$PP7g8RqB^;x)Ne5*rR}`? zc_Uh3mP#R6P%UwftOIZ-Tn;vZa@}M%m}`kHsb^3|WB{LGS3^OrCk5^knf9;!DrS(8 z>v;=QRc{1t7rk-RY^qP1LB~`tlHo~(i?rB%X70#Y=aPYSY3&`@OjyAnVw^7ed^>?INu>hI3KZ+fh@G*`xI8(ELd=#piEL;S0Es>PU|+up@h`Mwm`%iWD?6uI z>kUAJSt+k5+C`2j0ZXG7XQ}jO_HO!H`-b?&VNn+ZuH1Wou0Q1Zz~Zm=n8!2h21l@5 zc<oyAiln2(21cbA7CIb}NF?Ditto=011D^Y>en!S_f~2T0s>c7ve^eRBS<=IO{K_@Z$i7 zx2p52Ak1oZNhadvr5nr*m%Ge!M2@!LWwxIVh|$pK8sxkAKB%KsvbvR!_|@mefY7c! zDbU6+1DBQpb1E41FD04LP*PkDveN=;N1Dm9Qim3TZe3)dB~3KQ^aHK$X{cs<_y|nv zqWhrL>MyKx$Swe?FA%FE{KzjqfS7Quh{M#3$gDXQtL$}wYd*ok@Cz4sBcC6ge$TrV z28Ah42IVk4zP=0h8R&k#Kix5TLnppe2Fir4_>whrID6inA46>sx+yr)>wG^(R%A1W zOL1FoeM)_Q2TOW-zuyvkz3^?2 zO?}y;&-pC;ty$%jTv}EwnT7(79z?yT3sY0+jVDXxQl4u+*<34UF8({hP|vt1R^!H$ z&Pxl;wqJ-wSru%=R-7Aq+3Uibywa{(vP4-y2(m{bhB24^_o)Q^i=d$HS`U$AVWG6T zY8Mnhmf7g|gGuZcm3v=S93CO4;~tcu7`WXF zJkG+=WeEKgGMjubI6PBTXQJ3EJ&%g9SRWV-#CU`Ua#{JLxV|u%jRxc@bQu^1*~EV< z33M_SfPupps{KFV#s?jUyg139Q|Sb5MkV2ycqF@_bfm*uTpp9j5m>!+O8ZeLC89H8 z&bme3>9`bzq7-ZFaHCb9fQT1Am!#Hq)M_pwv{b1C}f8+U9T*U?EEk!?c<$XvMIUc=(GQ#p96*-D-)A zGNq@$=oVY79C8cD5G_1O?1dq)xX4Qj12EAWo;Ic_&C^_P;sk_TsK&5)Uzpp>={rt- zrK_l6OE5VLBGZ7=S98fR`;+l{8qZj$k^==PaSt?I5*ks>aI`BqIwwL28kT4)&ysTB zS#f-kA^SYyu4KfPV%JXIoLWB88rQ#v+8l^! z6d%Z_BX>L=lXmYcpFZ^Zrll4WEHo3?7`dx5*fDa646^yHKe``Y3K$Y9tuhjG4Hsf| z;Y6p6Sbl%|UWSJIS?TAq3OVsq6)cwqU$-!sM9 z``9Ej_G~k>q5wK4-pCu4X_?5G1>#lumxSdhZIlXTk$y$|mG{jc!Q&sP-SQ|%D4S47 zB?)obJEr{Yly8Xt!gI?NEhMk+Xgs92<*wGM1hU{hTExM2Ez$cIaEE|9fyc>Qt-!*= zUsq^q7{xjn4J__y_}x4$iiw}BIWn;(pWb??6qyFSL`ue@(D-GKMV4dVv*#(0m!1@; ziV&5nQ2YAM^CgRqdgr#a3u@6jR;E^kjyo<{*Y-dxx!iuzih0tapatSa+b95I0k5b%P8 z<)TL|Kt36ZK!8F*oG2J>vFdrZ7(((+1SFY?KvLyGJfX1gc@~{F*Xyq1uW$9OraI+1 z!^8A-dUx)rmR*FI*V0%#r0tLB;E}%a;%n=MjU||7;TsiRm z+BkquIQR3MxzMpTKs__ek6J&*LHI*pem+3<5UeSDNRb02`~jRi3P2lozq%BLnF{Y}nA?n11Gvfv zx3}^fU^2f|{3;kwmT}x}b_e`vS5RW^13rJPI0p9MV|qp$Ji<^}{RVjO1)7z93>@em zeLk}CFakIf9%{;pH~=pI0u8UTgMDlOUc?1`LHT;N+c3Yq;vh)-;n={J@J_*pzT-X% z2yzqvL7osVZ$ESW{Ire;5c>d4V*uCrvJ4y_eN{)>@?(A0+doD6>i(bzV*CgI?^jQC zDX6gqa1iZTZ+!=Sb?WMCf`|?T03awyAloCf-+vls zcp$H3aew10f!ss@eUU$x=x*|UZ`U7TAUu93gV670j6NW-o$>&4eHpfpDBzn%y#jw` zy??SFe+%DgDSs&!e>(}E|Jd919CG^r{^W2D;hdg+gZdTT2*JpKc|l}h?*BqF1^*Un z@soI0eUh6o-A+p3~`GpXeXCE{4(LbiajznDM`IHabAj0)6lM~Sa`sd3d z*g0;W9ML%V(?gIefm6J)cL5Fx*@J+k0rk&Z!`lnzkNfF7>nQlwuhOsCL4$NdBe?$9 z{2HNug;Ai?#_T=!x7@e=Xx+%+MKJKJHHn zH{KCKkD;hQ?;Cy_Ka#P`?_6r@{@TvETvTJt-x8W-JMrb zPA!y}B{2PbZa^$qvIFR%?isZw{cZd>j5}7FD0ljzg~eKrF?uAbvA!7o?f28jz+Y9R z>)XtURq=BSF|t@P0n=0(lB|?Ag{;j!O7XTen)}?a)Kc4WKBv;(m*TEm+;P-hTWd5t z6+7>^w8}U{gZjL1nwAL8E>fE1Lq)C@;+j4ZtwUsfog~38lhZu)CajXAcR4bcn#dF4#QXtdmmj___&4_?5_Yb-lNZz_UCw zKv)21?KaKKp3ifD6|_>sPG+3sj{j((zC*&fn|y+vkb4b0+kGM2xECJhnhZ3MYw?|F zy=wsYI2s4RFFbj%8%vLI<&b@Iz|sR6;|VMnmZv^*}rzPsL| zFSgapOD@oa4B*xFE=g%H$`?DnqIdHRA>cH%eM*bTrsOMEDp#k#G1jYoWYhB6m9IH?n| zE9CRjJ_^}eFF8zN0dVFt65g4(B0n+itm}kf-_W@>ZVn5gR$YDE`+P4VDb45$%_t6a zKm25DOdgCrK$|bP#o>3ML8y;ylA8S7V_K4i$isw0Y)~N6+v$=Q=J4KNa{}5t#mO#3 z>lJ)juBwwWg$o~-=bk2uAv)`yfaCI;ujZ-OYXq#o>2?@n!U}^!Jmo1?SI^r4H8Pc- zZIh^ZPn#vhyLf$UbYxzahBXbq$z00_GQk;!i0mU(${j8OO_Aq1x81nlJ24fN zE1n>>HTkF2HWA`BUbwlcp`pt-@0I6k)p3fii4dTX#YPWfanz38d=vnw`FjV#5;Al6JX-A1Ob?8)n4|l7)~y^rLVkGBPU)s(7rDUJfIr zQ}1Y3g+%@Q{H*%7`>PVD5G#rM6~l_{_{jUw#BQcPT&~TCKlPHz{*QcjL@>{mxDMIL zG&8zhAQx-}^du5Hk_REhblk=iFTSUa@e-P=vzdLxu$nM_zd`WA0Y}7O5a++7<23im zE+k5QV~9Ws+^{RnajV)+A%mW$$E-4^=0n%w(!27dY5U8afAY$cIB8ckp&UTZNUpi8 zy>I>rsiKVC>XDO#;0BguE&q+Z@f#U}Bsb#yDj1+|D}8l7t~;DG0~3ud#@^sKC+X*j7_W+7x%vuIj*X*AOTmjwD)f_ zRLVh0u9kWvlJ6)${e+`o-Qjds=;yj53Q4cEW=TEx;AxYKDYs0|I5f}-hEir-NG0C& z$_~{ewo~Q4I3Iia5{-xPIK<3g4022kRTSe;-hE+@X>-f^wQ^A0d=v*(eCBlTh(7Hk zjh6>(7ME#6Uhu8=BIwLjZ)Ez3CNuy(Oy~S$g-rV@ z@N#{|tIHXgD>F9tnLM+24ab-s_?c*1wm*{w_`U)9?i#OLLT~Q`lS?|no{by}k!+If z&};;(ymeAr!|2rlHg~D+P}W3pA)N(~k}VV(QtDvpInGjN!@KM@Y4D?&c>K7i9*!?y z3tSAcddv`zI)mLKC(ZAMSVrc+ldm=jvrBpH__FD%Wf$W5i!813?qa==>nIHqBy~5Y z`#uZG#-sEqt~m?C4j1{U36`NtXb_6#+{ZKwm)SDNe2JgK@?l1UgK6^MYGE-d_Q|p3 z&s$X_=lY?$a>75Xd`a;h(2M4%rknQ0)=@?mE%`uDh`6fYT~L7_eL!|iPu*8|JLQ#n zs35yQtzck8$Md0Sd~15K0v`lQ#`@glj*^7!6@GVFtwNJ|l{-DyMov+7s!X@&!pjY# z!_(!ZjA9QwZOe40qcSV;iZPq}$d}vWdggKgI%sHt7F`;9sdIvfE#Md~)M8UJTgJv> z=MCJQk7>RO+oM{KpJuUDUmVIlyO1m%Nt`;Z{Lgy{%vq5IZyz+@z2PN#MBQH;@L8QO zIN8um(xT99U@PWqq473l)h!(z)EZ=q46=EzuQthrF|~_2_F*B9%>SYo$#hxsL24Q% z8>DQhRCh#i#oU%)4Wm|&CBn`jUh@+rudfsh54#Vw^3+iBI14&*6BIVg-%3fwWo~S^ zXU6&4J8;xBZOQLlhTT9sQYRUgZBY88(wi?r)-9l{8F+Jz=8_AGo=n7Mju)CP-d;I; zLWNhU>1+dBNUwGeeYo1p)OuNYHRAnP_E#E)b|8u%jWxC3A8W_+)LL)dq(e0S;|XGcT6QOHMa5^UA{lW9#eKKxFZrbh zky3#DR4dj9-&IC9h5TlLp*!E!lgbQ?4g2kT=e$Xs#pJE*wLN~0T&Ub*5i3xu%Mxu4 z1d?httM67%3!W1C)gzj-HZ6$SDNs2zTPkyrL;a|tCcKm3|kBF77UZ&N=;_d}>j+V+Tqf_J) z+lZvwDxWj2Ird#4De68;U}A?{xh8`0sLKc;aHy~HPk12#Tb_(6SDLfh<45x!Y1n+h zKfO>RQfB`Ecb1B3;Es9Uc;BKB1(BnRmVD!%w-43_UT9w?0Nlhoq-7mR=rH7;)>dj< zy2U}1clHOoWq!EMZU&FZ5jUa%>ko%E2@e}e4=x2)d#4v&8uG;c5~lJhyP+y<UUzS5rF3l<3)FkV_-S;o z8;#yf33-@Cr=5;HE5beJuS|$GVtsD~5;@8r=X@v&u)nu98d{n>yk>0zPQY#c z3c?a)*lf$Wq-EBl?FV;s+gbD|Bo%$MXjOv^+iU^4YU-~J$x`R|mH? z!%Z`#8dG8L@%soJwZp;q1i%s?Hp^T&RZr?@eDm`0@(Vaq+W%tDV!`p0`w^ z4eF*>M71bb)8~V3cNXJ68$6CVxo5v60 zx6Z+scm{!mmk}z{t>tYKkqV4gnBbB^TPBcfTa(~|cgd3_4WF=xyOn|n>Gu3hiX}^R zrbE#6+b8X^cS#qgvkj?)WVnyVIxcnih1cJe%%#RVN5LTUviJl)Chp>4uH9}jI_1#R+xknh)CH6Z zC@+n&{nZV5GdZy?#{jpwWBWKTe;>WSUH(oUN>G;-4`8#T?`pP z<2V#;c%SdqIQZ z!L@}9Aa$kjQ5&gAEg0X1Mf6oBmI6S<97ovVe5HtPh=(aNo4QpDg4^sF86g1(=Bb&5!lTXsU$=j^i6O-m7n@OptmhP66n$>?8 zA0(|_Hb7*?w$xi3C|3+nY7>9d^g8%8`{a!eYixm|)X2YYKki7RxLcu~1eT<~U~zSD zDi4<1Y{KcpW{Hu;g|BFvmGUKXs+sYEs?U9@6ga~`N^*Zo7~rNgIK|w8#oY7&97(Zp z=5$Dbwj8nIo?ctudj9T|6D5a@Ks^s|Ue)qbJ!k0kJJ7Z_reOv05BpbAv1#+sjy1=FJ7~40ISd4}Pi^6r{jbcWN2oV@4q?JiN;H-!OWuf#VO}ip zvz8HR0#|no^Q5!yQPm-%`N2XIMwp)B(PdMnb1TS2zHcd-x9f7Qjft|>(3zM-%qrj_ zD8ct`l${&K_JPj5Tdzb_ZX~`0^Y{pT!r)4B(=)=bl#-vXMdK=^OS+WrOs)=(IbIW1 z?GfM9-B6<8*hYqwAgm?AN5xj?`Osl)5E&A95d!_>!bBp3A!MGus#2K#@E%En=J2gs zMTyTPu|12or6b1}9k@gK>FKa!p;4!}@;X$Iz&D=nSxS)bMw=n=pR<5Og4c}J!wLK6 z+)-R`M8wd2*CN6ocpPJqG>UrU@{Z51foE@*%vR=|bu5g@8-_rxc~Jf;!hOmo=9Z)+5v1_kS>;lZlaLo9V?onp3- zsayBn+E!m#SvSL2ArSM$e36;P@W zURt|UmkOUJC%-gJlmCx8Q+zA>`D(Y$(mfij)#ho4+5$Y56sPy#=-8`z4x=%-PJOjk z>2EsOJUAg9lRT4_?w!1#Kn+^DH`n-%%-cD!gPz5MLcVQPJW#!Xti7Yh=DO+$)oxK2 zp1i#(qfbS(4kRd2M1@r@e${~g42<=V#;9*NB&I%RgTy*L3;$8vv=#<5RcJPe3(L86 zFYwhyP#J<3pWKX)FAV%Z@mIvm=7$@^lFQ{5_grazu&!Qi0WVQMD(-9?iTqL)cjv_R zqUl?a*CsPE;FRoK6t)ZQu~8Axy^DAwC90eVIc*>Im6Q}8WntfuaQlOEz_PGGuA9l= zc&yd4GZx|&PI3bsKCNKK_7Z-7mY`|8uns0o_hP57PuHxx)cE%y zwbszLNVqb*hs|H_R9o})z2*TYQAdhYn%Q_wI~^=0{LgS%y8Jb$IP9HgWYE+# zxMpwiMMR~38^o$E_1roeL-EK;uf!W~8lm9a!)lLnLhg;9cTZ}aA^Ux{J%yy%wq^M5 znaD?Z!U2onr-!jCbgF2TXysrFxzE6Du!^=XQCeV(n0GsSPgmkaWhthzoI!MP`tG1O zcIZ_?>jbsF^2;HGEAOo#a1}mKm02;uyjYsRj=Wb#F=w4xnQRXTl@S=c2G`jh`iS-o zX2r&pyHvwS)E)3MzCO?X605TzVQaH%=3RoQc-eFoUr2a}9>}N1F7je_4=ksDA&`n0 zGe2mn?*`R$gGs`BYi?0in)5`ioN^37{Cz2^5C!8*N~hI8Dp4QfxXwY2Cd^`sJ#&a~ z3iDc#9%ZE*hBp*3@mgX0e4wERp6vulaez`TQu<^{q>3|fsw!w_;qf^FU*Q` zX%@vfyx2FH7F3kU9^IwI+@mYT?mhP!ir(4I zXI?d)1tY`IW9vl?P!-POzOcvHt`4Fi$2YxzBU@QMa_{b*H9^>0)X(o2Dzy_Sg= zc1kln_HfXa(@*r%*3#-d=ixV1d1srE023q#)<`^Wu@9dL^rzD@RI$nv|*L<$}LZ*zxO;w!x)L$?Yf-GnVg^enwzg zs_4W+qeCd(sTs`zeF!QS((@ms2|Gk$axN*qlgt6~0nh!Xw}pt6YihtX^>1J&oG^{x z^cs7UB^UEf-aAYFPCB(-R+H!0X*HnaF_z^a)mM>~cEHx>EIC?t_HsRtg=TGmVk(vC zhDU(cjB^P3Mk(}Rl_mdlmBk(?vA3(@(L-cg+GeU5{(xV)NJjn-sFUUYj5^u>H{ARW zbuzHB{O{iX3w1IuG5r5Voz9@j%X^!2l;OeRX)pvj%+BoMZjx|A0Kh{qj4a^{{AT|2%&-h{suv+N9En%F^~u!`hZY&3iMI1lz@un9W=#3 z1a^?&03d+`h>!>rAPEru17eYX)Cd=Jfbu|I1J?kW-T*EnK$n93mEq1WE@7M;h4WkA zR*?Jt_CNxMhlM=H9}d zPtQj`9iF$i8#tycoOxz%nerO901zigxE$ zP(L>yKYUIprHBNyafTje_Ic7Q2-!7>jMN7{UkJ#AQ7(9x{zswJP zK2T8N`2PI#5dG8yFd+T{g#`W-o`~;rRGs?kdvyMP5-R`Ji2(`r^K2K!p6gNq$6|7c2MgqzTy_TS+rX#EETAU=UV|4KjalK-%W{8T>t62AMe6(53!{JJ=Ozy9Fa z*FnMFez5(?YRI8z0cc4y!NULGSOb0$YtWYAPA?w!bXid_XhA%JfitJO2?+V}=kak) z3xJ*iHZKO{5ytqFKZ3A-60vYX{V$1l_4{_woc|Z$h6ov@YLU zd!Gs|Jb9kuOGZQ}-l5-tgopy@zrEGh1A1O5qBZd6hoF_`E}yeA1%CfP5J%wx_0Q!* z(2sK_e|MQ70s`<2`;VS}V$8?#V<7ay|E&zu@8fp~^6cy^+Rwh<0Nk1PqViR$c?^1TE)Y;V$rdS_w1O8Ko-9|? z?7MzmPCY05S>hV?)XhWE7frH*i*5y1WFb#ako@I6Pb-nkU~rO6K)sPhZhJ90V;bJ} z_Rw0L&0FTbK6iQumoa_hH~c}vga_8cPp zJzp_Lm80A^o5EJaG6xFZRdz}J1OY=A^TOO22Cno7t-j(17m25kf}f`Z-&aPXJ4Vnq zMRm6>-F})1`o3? ziQ2W>-FWHDDBK5rG9Jwku)5yYw7yFY_;jefxjn+GZ23Q{+~+bG`Y%BBG!JkBkvL@g zdSx!mi4(+Dczf1I>f5x36yP`MhbbEy#M!JRPuzxhTpXp_h854PAe(_MP{M7+)xzGC z8(#r;loz4U^MVG@nN8G{%zJ9iXGHjm#|C8FmBn*UwcQ z@U}L=5ccZ$wx}0aFH5G^_D8f)w23KDrS;=`l`H-Z&2rR&=BRf9dB_fDTwO)ctgI% z@fvfZC`RchL@Z9^3{$m&4^N#4ZMSSVA*yvmOHq zM*+aa3q|MhVK;VjvW(YuFB9EZ3>Ee%Hih8>Fw>`P(SOt=fz*G~pM##|CSSw(*hWH; zpBUY>N(e`aL?iI-+;lhWCv&OyqT|X_xt9kM6E+)qE9~6-=v2Ot{F1K`KpeiKK zRBCIV3e+Lr@5uH4FbC}}Uy6m;j(7aK41TT}#>VQXLwh^KsRm##dY%*#!+;;DSOZ-= zV?fV1=AX@3{+Dk6M}mY)*fTsjBY_M35QgC+x0P5{hGteNfQaZdm0 zgdq8=cywr~RXyfrZx!lMJ4bQ$$>t{dH^mtd`8uDk?c}HtEwwo9|3;Un7^V5`qy)Er z#_c66J|-Q=0*PFA@c9Nk&3@8Ck}X@oiR@{U)sRM-v2yu?Kib7Q8=+CSltcNGOOavx(~;xXq0P&=o%8nPhhL% zgFayBxFLht;N!xxqm^MbEh3s_G4dt8vcPn3O{G}1WgA_yxrO)P+;X6h(;}x?Bx^e~ zwiG6QRBWQU-khE{L+x1cd*5o$6hvD2>*EJk#>fZj(`3faMNg^DGt}2-eewBO$N*Zv z|7me4VjM@-ykOS#v?Th<>T5o$gDl$V3V2h?4Lw7b%ntCEQf3Ntt2IDNbVCBx?iNl+%{FNKL*%UXIZ)CeaPRRx|$`Wu$T|Rw094?>E+vqS2s9SP+Gv ziEpL4Zdr+{BNQ+#qrO?QU6-EH9J&;7xFyvh0{*+WRI}z5!-JkGZ@3b>IJLyQ>$Fa9 zHPK~L){WelBqt_=%5lV@p8(q2c>A67jw}aREfLS=kR*BEt1IQPl(1R6xx&>~$wVoZ z+97L4_DLhe@(k|nM0;U-dE;1)*sxwraQN=Md`T=*SYt6!I@YEi3Jhjvg$o7WekCF? zT8|^Y365ofO(9AF9P@0N72I;CGoYjmv-Jf4OTN{$NPT2~I1Vcwj2uV``;9@FD-6qmPpYs`!Sl(efR%FYcI*3vqs^vkD`8Cr*%hum-* zB{K=;pd`cB3xs&LmJkuEMowjM>P-W=wtO>B#Zuz)7ZhRVVo(Tt7Kw zW`cnqSIUk@yS~^-2=CZK>aOb|@1ewvM~@1PM)SJ`GmEfQ7<1x@CuQ%U?%L(?0h(Jz z)L5tRg(n3X!_Ig(R96pwbZ#9fBbUDJZY8Q9W+-KJxfkE^5n?5jF3Xh^!9Ad@ zv0U)WZM}s)!FXtO7Fb=S)ajw>R=E&HXJ)aRmo`R=87$R3Nv4c_NhdjJp#(|%Swy~; z;ewK8MIF8VH55O{mWaHaqaoiW4XX~9(}X7Gx+J?1sp4rZiZ^iywY$^J^blpLSKNcq z-#*BJXir;PdTl3kds_MPFA>9V{Uz|7QzJKL+ zKLrT=Eal7vnN7Dtfb6-z^t1CcFZ0&0YROZM1Y(7V4udtZj7_;`qN>PuCJ^m=Xytoq z4N`@8MmObAbVeAv@$q=?r}@>WO_2&m9z|*AmN?QElVp~3w`_8iVai{=E*tvU(a3eA z`jEE~{J`Bu{rc7I+P;pc@<#kqeT7JOx}Kqbfx>(1SC1Vl4~VnACpObb2mZN8yXdvd zeDH2{uk};nhE4Z@#v2c8hB#b5rW6M)BNB*ZUs^nMYv-a@>Y30>TF2O^DpZS!GupZ# z8ao>aUZY~F97l{Rnf2uV%;tx=GkG7~}cuXn# zkX+R2>P1$-sxTK5Dx-N6_HO*)a1*?vOpaQ+9N9OZXB`LW9OE6x zOJ%QFC_}|v8vgMai?R^UHDa;hN>D+t4&^;zV(IEc9lw<{v~82GCvuKBH)%FW@WAlZ z-3$`w_)Y7kp@!Qyk+{b^**@7P8u_3qv$4*-w_7dQDeg(^el0g4(ToNz;#Ip&Z4BX( z(?L!6*`q&AO_d$b!8$YXpUWTHPVm;9M_ai6YrB-1+=t&(xuC@!mAdtv#Iz|XMEoX^ z&$)XJ!Wqhs$DcUFDL)!fBOL%&pJm}0=>HLlbi;(T+^1yB&SuIyZ=&-2JUgiE%zN3! zM(NT&u>fYCO|^xJ!`y(%O%zkr?eR2ND7G>;L>%9xlHP7}L7(R@OTS4&g-_W$GXIc% zKug;l;$;8Begvq~&8B>I7ERqIcjhq>={OJ>+JSnKoxV*ORwJLeWU`i;R)8V|Z>xYM zxL8^kV|fDy4hl{QT+>dDPTayFXJ-u*(9E9o`C@+0?j(P&?*6u41XyOXb-H9N{t2X_ zu-J&7-+Z_!G=e=9tbQ_(6gJx$bP62}e~W}=weNpG!U!EYorbgCld=)tAdKFtdS!|d z=89^9orTCd=b?vC)jQ_HR$Fs84KoB9hMe2bnkbwzboE@WSw+`L}I~ zJZ4A~+H>dWWZsrzAyV?Yg>{9~;?Cxi%2E~=w~)uelkRCUvi<5Gw1R+wU& z6#gBiA~(92+fSM;uM-i5!_h7)cc$F23_LK+_UV+gx&cdZ_|{Vc&lr2b4E@md(}FgF zk5QcxBe)x$o^-tt1`!tyecQcypr}Z@-WIg)59DldDBtN4yud}p=}A3J?IL1iJV#! z+t_qOc_j3(c>hq(Ju33ms?9u4aY?SdZ~>BpeN?TPD}70VUom`KiK z|C6t3d9m$n{SrX`&+khR4zAl4%*e=i{D+&boukWkOQ{$H9{`j zgv7hfuQ@>`bCvYqHQnH5&I4~d=Ev-4kyvNM$+SQMyh*%Q`4odnu%ChG&bx@0Lbzp1y^vR^LvH61X2F5m zXA}pQNK|cjw1TZIh2p=T{hu0u0nlO24IT0E{}*HD5GxE5ZP{zvwr$(CZQHi-UE8*8 z+qP|6{ZC%fNxwl4YEZK?t4h{BYildVZxwyz23rg0TK}FkiEcGIPv=U~b{WRrd?Y%} zT>`2W<(aKE6(tp=+lq2DAK3xj#B3OlyG%7#>r@Y#9((fmSYrz^jtGxNN_-_TK;)VH zcERsu72VAT&%GO0>S%(q1?`X2*`L}wdon3o!*b_F7C%<&p)HCgL_hmc&L=rG@~@K9 zehON@-*%mj+SxDQIPz{3^Y?-?8q=#KDD!}gb-g4ul2nQTuFmip*hApYIAfdS^tnO6 zok7C7>@5XWKVX~sBm#Xwt#r^TQ}p^~lcgxb33aq;{Db$qyzNq3f2<_a(~G+!aJnT!oVRsl zaSwtox#se&9(CKs+h2%pX5(H=e;X|+jp~Kz=O4?r`De^J^~3gM(qXWbb}w<(_!r5D zxq5CGaU+6h;f}VY#KUk$1oTF5F4x`JdzzV8P9N|84nZ zM|+J_DwXGay0uQ4Qf(5cON*`)tnm2<14GOv<=MnqK8mT{T?7k9UB2r&k4z+|WofeG zdDT;Brm8ElNI=l1R29xT!Rf1xy%&}HszS~p3A63yJjb067#nUg%COdwRlOX%lc^o- zWzV;1W=2+D0CbB*kD0uMp3(mz-HNg-$pe^*7?&2%&YSt(!d9wf2W1DUjaGATO!fMBQWPa2;6p zm0NaI^K}{qqzIY+6;<0VR$ZYnjC4gxe^ozjK?L1pWcLJs8-Jp?Y7G8OL-`Dt4)OSDCDsd>_VMIv;awdiWYmblzLpIa@vvm=n0lJ(rXbP z?2IDt=vMktCq63XE!1)5s1E9MN753hmh!`jqNnddyDik2pl(r$bG5zloqMF%Bzgg7nGnf%zW6C`rAcLmS(BWT{h*4;McARd=28K|4+3{P zDXL1M#H2DpwcT5S#1N4++cS!x)5+Nhx>u z9T;JEX?Ll!|M(uj&^!S_K_XI+3o#+3?qUIpL|SuV(Bi|vOYd9kpZ?X?YBj6#YtzxS z$15fp7_KiKr#HKHeIho@0Px`nGB}0BW#Bu2j}K6{kI(ly4GkCq2+B8m%#0C8n77cj z!Qr1_J^=U@0Um=W_Hb}cDKv%J%lpK7u&;@DS@C7ts0*2LJ&hBjRn}HlS0j0mtwx7}$KXAV;7szFl)u zAkg#9HGx6Mo`0x8nu`#@_DG-rK0dx4wz|9?dwUTJID0>MkOR68W zB~%z8PlNwi8AM?44c_K0_&2jAdU_T-&A$BrAW)P0yKYEN8uvT`*uy?BBg=C}%t1@UO|&e5t?b^$$DX`kx*gT)+R=qLa4)Ek^&ZePY%V^hN zqE*lhpoh*3+IkU*JZ^#-AReAE99YERNk#_z%M|xFiGufY-XH zcm16{2^fHlCL5AYoyfSvxm4-gRm z;Wd7TKOi3i;QST;acD21%7U|d>Lgb^+6jh zH^9@QYYi1|6#HN0^jXzCa|gTd4u~|i{JQ@H-TWTdHS3yTw}s@QZ4X>`gVcQ1y46T7 zHu)7k^>)(Nym++ekTF3QuE!Ok1iG>SZV-uqyg`o^2E{>Guh@pS5~ zTS`6Gtn3Dfe6?YW=XsZ9D$iCmJxa_u1fG_RT%oc4_l3T>vIwW~+p`s<&br`N1CS_S zsr9#Gn*Mj%9`?Prn-Y_9rqX=jFA-L*0c`x9tRit9ECr?3W!{r*Dox?sz=@phA>sbc z$y|BRx#$pQCVy)!I3+YFB8i@K7v_t zIWtA+=tIorinvJxVv3wm163rTThKf9LiRWtA`;--zxcjFpc?eYhm0t`OF_I+PLxU5 zZ$xwzMgQuR1~yp^=oi99h%R{K)y}q`bT1zri3^hZVJ_xGUiu@+wW{tE4>sLMEr%Z$ z4a|FwnxGiEYM!dasflDjn;->e}@GcqEgwPrby(ametmEi@&uGq(LcGaK1kFbE zJ}lvP>#Y|0^#nX~B$}}X6Fd4sCe0RjR;-`)qQtUQ_V#h}M}6VTj2xT|gLj^W0UUrD z27mJPEs%JGC`sW^vU;XzyO83%TB(LHksVGE)*6h@@fF(nWfPgVVD&ff@P*?HhE33S ziDL0LRe;bEn+$3!Q5}*uX334&tKa_ycz%#oO36KKp(g1gA)YLm=9Z1mP)9Y@!}1%$ z+UrI1OJcsL$}WS(rYMt(E8GrIX_zK4XP%Zbu)ZfwSW7o8L;l^SfI2mZaE$Qy#96XS zW57bT6n=!po-nZWnS|#x!VM(%ggM|jWDT(iv35Ul^00bW?T$P3wnkkROISuQm8j+g zBs#APwXV+)iXHVH<$mj(F83*rqbbU5dL6Z9S_EGSc$XS2Mw=Apfq-JDsBa-(f?$kJB?0~3jx=aFBP;0ON zB6>5dGM|ADx--4Q%*}=Nq#9R*@RXWrD`+cd57q=z<-C&meOUyr%3l1l<+h;WQ`LMz zo@teq$w}sO7k<f~Mek=vIx=s!ZuNc%R@%wXh4h#b8R{J?OwWZgIw?h`VP z|4v5(aGvTQHALB>Kjc~7M?>24wY0LTG3AF|YPeTf0=ALVt`UB(wPKgUQg>wr#KsC4 z@P0Q)fwlXlw>^VF93rvrS~MRu9Frz}ncyNU~GsI1&Pj+U< z`yl>t8*A#-8C!&nx3rqgf*w9SwD>uguS2ju?jNP?5S+fUvzt!G+_T#T%*xA;Z}gu= zj1mJE8e;QxV|IhKY$s9-n>h)-J&inav+?i)maU|}1ESDGjyp={n&jd65y2SkVXM&Cy+^(m>80?r!6sk*}X#~Rf}g!(;C6HZDHXF zvy0&uZvx^!PNh>N>&6%HG5>P7@?#5YlX4N+G^0PiKuncu+p7IdP;r1 zEdQRKX2fOC1a)|R;N<8UZwyq{9&9=w5-+VzoMZ3JG1LD0Z{$t}Mk**bs1b7umc}1S z+CzxAseKMb(GOF@U9BkGh0IAJqv=YlcmQI)?Ik{6}ckY7f$zPh?5g>Kfjh z1fd%aPR=O#-2}-2>ZEy})tpc0q?!$`)(=IJqtJ&MhSgc0UIo{FTvAIegdot2yywBj znbJ$Oel*?2lWn)$q=win6MMqmOd zX!w?X6%;v^sG*iA4&N9{7?(M=DbjY4?HOoaAIeCX)szO>w9s6Ye>68_2}lda8nmos z6l;0@yuWCJa^!Cqn-V;Z5RH0BFNeG@hg{p~=G|N=sT`+pulSW&1_N%^HCi(-qPWN2 zS0C99X7P#R7{$ljZX7*Xolp+l&ax3TZ>*1Bs(k_+2_qH*$A2+IFF9RrlIV75wkATG z8#?-s^g4RisLYhr6CwpdfG#W16isQST=a;dSndm6jJP#=vDw_Dit``7T##6mE+hZ` zF{2l`VyVW^G`zNq|K9q(y#P8Hfey@2nQJGT_&e@q#qu3G95SiQ%^ERIc%69Ygp#i! zitRn-tZs&TX-c>ziKRqsyKH)|kwXjxWlZU{G0QFIX?>-RUZ@%H;!L)w{VL7UifpohG!l3vc3V?|b}+M7 z&9}r=!>E`ux)-bx)g|eLN|L6xHQR&HOLkZ!(M?~p61 zuO4Gf-ji7`MYrw5hVk;N=M4pyuPX&KRI6t%x5Dx?;Yh!xY+P^Q?#LTkYM{Psu>f99 zxl~7wqt#`yQSUU|%S*u3uvS6UFreE+!8#>me*@j_CVAB3U)0dG+L%R``GoYE!jXY- zPwC=+_7Ps(@%I8^))hUGu}-1l{X71+TBi*jR%0U=um=NA5)=&N;|kb@OIqVtZ#Mjk zu*-_W32QRD!aF#xcv{WPFdzJ`wsPSLRux|SA;wZf=1YEeGa9f28Y{0}9Qzh|TOz0zowL)9+K4^RqI zmb)H#u@iyXIqei((K@A%x8@C`5KoMiqw$aCg>>a)R9GTQwKn=638nWdYiQKc6=Sp} zL{fckx6@12alo>&m?yli^DQ4UUF7QdN>W?#e<#py`{~CZh1)ujRFAs&qZZ26^~)jQ zm;x%8qqYU8FPE$R80%aIqhXajZw#T?D95M0Y}`r)nMtFSv*@ci15?-ZWe4t;L8zs^ z5SH5G9{R2uat3~b6T^~|C$#_ajL(L$85_Ax_{$8Kuk;-Tx zfu!MAlTFjVTcny*_vKwMvhzDS#n{lnUU&`3S5*kP)#Z`yxv17#h(y)X?;b_m+(dZQ z)OP`rK@CVaFY%_q^ojmK79>+Ew&~g(Y3~uSMennSWLKkG?9SsL{e4&Y>%?P<9QK`Xf zlSh^G9Mu}*xuMRz?93dJE0WM4=)gH@BJ1bwzd-cTcxCz$nKr31XYwUYmz$`3W#;Qe zEpzelS-2`~x$yIX;2A*aQU#h2dAA|+js$EO6LN0N+1&GiyC0hnfGjTZ$s+v`l8cc= z0}Gl(3Gy+SgvkP8qYz=_R2A~I$~t-mRQ15;b~$4^lOys!Sp`^u-GK{u&M(a+cID=4vc(EYk;erJF?KCsj3N;#=G% z68u8{E(3|;;XF;r8OtfQ7^^9eZy6h^6O5mqE%qUQX}d(@4F;4?9DWH;8}3qfmgfuV zIRZ(2W@5uzhlfG1Vh2lTy;1m#;F2?taprGD!-4JmjHa(~lBB(FHL2YAGfni|s(te0*3)vk{_ohNLDVfcwXAIM~C>tnwhC%_$goAIC z_U3Bv+=?#0NfH%BWBsD-?po-5eDMV6mZ+#-a3?15nq_0&aM4f#)*d6R*4)1#8K7+R z8c?7DirwavRa%?M`R%R!7Ob$E&a7^IWv-pPSK!2_g*=rW-b5_dwvCoy$QFJ;c}qfUW~wG> zdf{9#p*x){7Z10l-<>aJ(3lPFWNn( z!YPeu@hMJVqoO}Nt4?oodN&PU2^qZWPWa&PJs@ zR2Ran@w|)O&ACn4Hfn18NeEQp^v{^<)}mV~q24$XDG(gvy!xz!As#*O7kazboR)bU zn|UNmfyh2Zs^6|;c=%lg^5F&QA)PQ1iNXkcyGNAXGqQsXyGF`t9LtBzd}L;9KeJbO z%KqU(GQ0^)+4XAzJ8_AD)90vdt%nN;4BzFEwH@uOW#D{@_* z`2ysfa;G5vBd$h64YzB2HDnDsH*I&aBjRyxUSm*SOoI6Gmjwe)`*N3nCf0S(nkbb5 z&2L}N#mv(5?pKRnwCEuf@PQkC$ZM-?W1b=-!R?A>szr(*t4X*+@{Q1)zU7^GH(T?H z{IgGcVc8bzAxX%foc@)&n29}f5t~q#(61wVd`xy8AqlOZ-Upa(sqmwb=mF}WDU7r) z{IPydkrY~;mg3I=yE)>Vu26If?%5-;U!=GNmJ5&enY;A2Zam zB8wT?JM#L{%{I71?PyzEYJ*KX7!5{edzeNoAM)8;e(pF88!_HDs%6RC31l0>-_Miw z9TnF<9FwT#*pvB38$J2c%6`$eYeA$`7sMZ!P2?A;x<`0e25p18i=zrv|giA?aJvx6fSnVsBN z&rC{kI7wo2s@Yk$^rZIYPT_a>zo7KE8I)AMkkU67A5r)%4s(Ebtm3=(3>54f(8mG~ z(N1gyjT+_Rhl?owL$ohVl%)$G!P{ayB~R2(xRqPZQx_yET2v}Hku24-{dZmfqEEYL z?NoY8gKwR_ZAbPSjV_>Iwxm88nTO|~au+Y*BU9P7knm`lnFv;p7y=jao||vs8O;tw zDf4zx`q7tW&uo_eUW&47y`m8;R!J-4wZQ{7*v(tRb-(i&-YS#iZM$Uqnp3 zj?XxJ%VGlG1Fy3e5kLN|^1_AvF4da$Voki^)W}(nGM^XR1i{TnMa9ZJM0Y#m!zggj zyx_~;&x`i^1le^s>SbE7@)F{z3;b%j{xc3ju6l#ex!dFQb)%X8Z;Bm;aE|sa<_{_p zT>0APX{w<%YBrb^25yGT8%v{~{%8kNO`jo5AVXCg=g;Q*oD${>><2>PD(hsz3;GeG z>`EU&6XloF7(nOZba9|C=-(gyux_>#CR~N^GiYMJi|SOLLyyPL5{lm^?4iPGYW#nb z#^Q(NbH#W|ht{vNGNLo8(#7;S3_M^CQA}GrI}V=@KQu4DT7Hfg%H zfHMDybb*O;!BL;Bd@7d6|4|{qJ5qcdZobxP%k5M6ooe8R_o+uQ8IE2D`yS~m#%h&* zEP^w2LS-T|b^U-w#b-%>3p~$7z?sjB_=j!7ebYrXH#!$S{&Uip>B`d1;X}Z@DyB2K zj$N3%TFY3sw`X!0x|&W^BZ2M8jatg*)z?UFIN~zatQz2&x6(~qLr044hPe6+z|l^f zS!Z6#`WSFr+t=QDEG@CEaKtD3B=V*uXC@d0|M?lA1GiL>SriK)jYI?PE*u-~lW3$! zOu@;eA~dh76tIQ$!NdxgIf4;Ddu9KF;T^#5jh$3MFFwS9R6Q%m)@7qx+*^#qt4O9+ zHiNz*z0&O@`eWeZ{63EGx6=_7FOKexy6rbv@`xx?yLf^I3*wrZy1Fe9)9Jy#+aSnh zJ>-Nj6kdVZiG4oDphR0P0qU0yY6hgGx`rdDzGp(j$J@)9BSVqL#++I-HsrxBD(*8V)YhSPHA&>BYlEcy|BdgxZx{+V`??birMTdt&2*3N8;2@9D^I)h{x%ig+`k@jom12C2h+jg;`AnCmL6O zUGB%pRdFRNsg%z*K*<>)nK^v%fKvU>*&1l)t|EVGZnu;yuPI^-ZJ3Lx&Vv&@kd|@z zG`@tTBW1JhrV`l1%f`n9cKzm%ZI}Hj>)aTK^W0$V%!(ni2*Z>N7dFHiB6ccs6pF4( z>iW%(tzbf^3yi5@DC;9rhFqu^VZCs24a{noKerG7}nj z@SSr2De2b78(-}@`>5IK-lbl0xjHbVcSeqxlwhxovJkYl!gNcOQ9vXg{z((_a|8#`6{?_A{KV1Qq%bOn+hyJBVv+Z^ zA=mO->Lh6|nwU7O49x^R#XSxqaBc1Ru=0wva!mWKSDh)w_2aI>f}U5nQ-Oi14Jc~% zut}EQ8~{J`z56LIyCuk>?CS?aDPdj%G8elH9Sx(;PT$O#MPl^=-f||_YCp*1+^+mn z{!hrM<5C9=XR#>gn#4#_F@pJX-$fv*egtZUdMK2O1i z6(iGdG+#f5OD2u@?aDZqaEOBmD~b`B^KIEB_~L8d%4>-lFqH~3qU@ACxO}6<T=r zMHw?$@g^;ylBCI*MQk+4hZNBd#rZ6udf$DHuK0mgM(1NC&3nzo=6I(`O8Fx3vNu|E zvtf$cG1h`KrBy@pCZJuytkOqdpo#ZNy&C)og1pb>nDQ9x1oY=Bw424?)Nvj;do1qp zW6G6(d0&dLQ8R?=?ICnhqbDLcCV&V-7m@c%Gv3kUmVgmh`1A6YcgM7z%vueU?U=1~$$iWvMNxL?1e4WQ zHB$j@%B1*&!G*WK>}f zQ^#ha-48V)S)M|uol(@l6b|F$^@ZSXD$XSIj~Y3(Y}ti4w0ND#r^I{Vn;tJ|sdG-d z)cIZM_4yH4P%Af`)JYap7FW*_s6?gB16#SV@NHCJC5vd$?qv(>F>?*jG>euz()Wrk z5pQDK+8V6x!X^@hf9%wLcA+CG8&FfhY|Cvg^*FE=uRuwxJQxTYhfk4IdFJfEeZn@T zV%k`}!N>HIa8OWegFXZK+w<;x|Hai482wF zu7;PlbQk-21BJ9G{bphEWAJfScw+ESdK90J+}6xF(`3}zOB|}YrdAOX^nQk>`d}_t zty|j1ne7yM0sv1aWFo@}MiiID*Ub{e97%dR)>VufL_ zc-a*+AlKgq^1#{jSVGgVNEhRkFjNwWgiKjBVN1Sy0)qNNFa5-tv-Plf+zqKSdSnin z{QS)(2Bkxl8!Vp|r9V90HP1@fP?zm}Q#&}_{29R^R@(Q98^DCxd<;Tb@4LA-h*;go zSJnt+W32{gkUOK|T=kNW6FM^<^D0eWY5}=NYFlJwDfa7Rl9$b{oX$1uNV~Y5xnB&# z?BwfJWYkd!91ztZpHIqiX~lMaNiSJ0zA>8(zg3sIulgKe%@2)-NNx7&`1NB!gO$Q_ z&#h6WDDvML`+JwG11EIN(&@t^DSQTA!@R&m#*GkX8x7JwS*WcpnLhP2gNKPWu}>;PDZ~F&t;b+AdEd9 zow$67nAe&oBXJg{ihExhFH*4OeQZ5N_cpv(Q@sSmYtVJAQQdL|=5=!|2WPm#*RbNWd~#^;U2}#eSMF+tCI=f3=RjV*NYa+c zZW)M8_=Z-@SLlJ=){~ZR?S`#J7qd2DCyyqFc7if%h{E(ZA9cY(*o~U_&?97fUICby zb`c&&&>XyXz2n>p9yBa}xIXHiAXt%AcGe)96Z>2uNz}j5bW9E#h?UNpj)^~QE2J6@ z5>u@S$SQuWV8sk^1d%7uCgtoVtF8(pScSv!8TDy$kz-0u)|=up%`#Uiol{4^7c$*z zZ}rcXSV5<(Kz3TUZ46S8?ag7u;lsNWFDq~L_U13WyO!Rlxr}UPk_~7vc{oiJy`|;M zWBiRFB6EBV(eE8i;fTuCJSD4mGB&apW5$(w>ymTWOci);rV`2Hm~s44a-9ve+nK72 z$N$T?i<>5BD6mguXXfBv4?QPbC^y-+P+&RcVAya#Y^ZBS6Z09X1SQuG=%l>yh{{7` zHED4MD69KaZ*CxAqS|<1qer&FE+F{4_t7W}vJ&*~sxH5Jg_=~bO*}Z?%*eVYfl#5d z;{r=vnqakQqPW8bvgQa7pr1OrGk_)Vu8LK+K(Om|DJM%cxOyi3x4JAgMRxM`jl`HS z=Rs~CCN_K;JX_=<&o%~+jH=F=na6@$2)#}G;M&d$Z<3vxpJOjui z6GQz=3rZvH`i)wZ0MhcOHwM8P-=m&KOAdu*ifo)zNxcY zl-RS-Wpv9@rk!ps?Cz1%gM#nl7&>4jl?Y{}c+zq!G4m}cp}zOKOy!c!7@2=OYJDen zDD9MZKcZmLWZMMdomTl2&DJpss7IGy8iUd%-%OqSuh`SsG%Uj%m3Ss2BlfN8)~zB_ z!U}Zp)N7R#ZCcYhk+AunqV)SsMtjhj#51IMA#s-Ct=~aI*O81Ef7al~QdmHtke!Fn z$x*Tvxno5n;~4Qt*~ly*UgFZR`inW{Se5JUW%uC3To~caoeUX25qohJ4js3uUNX&= zYJckEX?Q3oCP;G1gFjHg*-kT4u8$rTu7<}?>>TK_2)as9^0`5X8)SxH}&8rIz(fRh{B&Hoad`hRQ382{72GqV0q zRO&xB0_Xo8oMPu>W&ZzmBe;R8B;Rb(0U-&8FESx5BC}BFCN7e)!T`fCFf+h#vLprt zNKi;fQ5Q-`GXoKk5*D~nQUV1n$NBB;?)ANKTIV$Fww(Ij`rNkHy2Jjt3L`V3lE)AW zAqS5}3JM~4=4bXcz#sr6009A3?B$ELWt1e&uLWuDBzk-zX(|l4|HiT4`C0`hc(I!5bfeP zqPzWAN34KA2NE(lF%j_#30|3xph1EY26j2*Pz$j<66=r-J`VycPUHaim+)W77d6}& zB|O;I$48(6g*^h;RUril)U)uRPT(knJ;*Bh0m%0b-8?{;(6=QF$Ub;xCsEIzQkFrs zqaOnekVnD2z#yW-Ps=b7PJkg;XEGTU;CdX-TLCBioCM+ zvHZ{LyXjC+?DIMIvU&aVR*moDyIDf;Yg*lAEZJiN)>2qC> z@853k{@ySG(62ci@HD6qqQHPZfE{o`P(Qt2{@)(MAM&HW@Y@~DAAG={J8vc*9-e=7 zP~Xg7IBJ-X7s$75Uw;++Ezs9zIy6}R-_{Dy1G?@DqMQW&vcGnVV?8undA=^sFRw^( z8`&cMfl0*hfbL(=q`p_v9>|kGAz~PY{qY?0($Ys z95w5_L(G!BTcorku%QMG4S++#A+#h^M7ZAkJmkS2_<#TdMC^cW2mt*iG#Hn0eZbyV zauQ&WVV|l$355t0gxD{=A{>O+53vxT0K+G~;^@muIH=8$2ziPdH)DJeKsvm${J}`rC&vw1)2e}?*9r}_8u-U zsNpf?Vxoo89mn$QT>cC~7~Su)waG<65V{j66hqo_k^LQ5(B4lvD%#z#vGKE5snI9+ zj=~SHJyu#=a8u>q7Yj266|wUUIU?t5MOw88kD!y8+JNFI8|#w2Bx>v0r~kGsN-FP! zqpe2NleV*PYgIsjd;qF}B zKtp{4#kaZFzm$8oqm;L`ylpO0)`|vLw#8U7n?LP^AZ87gS>XpT+HX$25SKj+9wAGe-+b%o!Z1mR(D!#Le_8o?P)!k z*TEW1;=W-QR#3l68OHHvzl;vnJrozFz(s+N(ika+Iw>uU-8wV3G{8F~peU1dx|h}s zmvP#VY4w$RFGKE1GZ_{aNTJ`VOH~mRwCwJOPtt?#M#y4i?Nb`o{N zYgfjc$M@a7ut`B#o|fS-eysNKdmx!f*!H&Qc)1dF%phOnD&6h3{wHcUo=;U>s#P>3 z3n^ItR5NZ6J}I@@_v!QPtl?X%Ut=*0s&05Ep3b%ZqW*!-)WdfrKRt(x1Q$aA$E>tj zC7T80OI)_*EcwNC9*KQw8Uhn&DHQHEYaWNpOSR@@rry z*{@_$W#zsPl*#Q)VaGh;xZUCyf)Q+9&vv?7II-8e94B`WRPtV@TNVbQX`r>dOmVMHl4kW144%kCT~!ACxRJ^lI6Sp| zp%Hqay_WCuC2^sLoV~RvY{lNl#@-mGXLiEkM+mRynjT)sxGZ?>PlHR1Nyj_q^_jyI zL@wtpm<#n9+0lQlr0_m72~rxqwf9p+h3WjXkgh&QpfZcjSh~`v%Ln3_zG>W!qwI6{<5)&X8)PhZK2fR^qS=zz+O!CUm^knY+h+% z7|g%5O7O$M!p>CQCHgOF&i}c4k{^V0N6>9*TW&2l#G7EAhjQQigc&cENRx~9bLbm& zP)S`^J=&^ToB8H)>s>BMCfo#@o9p$7e2hr6mD7hIs3f2ubE}Aw)(JHPLSQy3ZswuA z`*o>bLF<%_R`<5db#{xIE-zdDoJ$mC5)-I(Zpd-U_rIC|WzybUMP4>&yg{5ZYI23& zcIm2@k=4F>ajDyvq)mfjb4Z)GZ;m^LkTYLuhp352fe8cqEan)AA@uapjWIcHc!$O< z`0HX6={<`k6yv>7y3rmi32qgg%KW3$ZovXkg+a6p5J~ftMZVhwWTAIgl%`Uj+i4Zl zfq#``L+WMDk0gbgzJQvT&TD%-Y2o|6>(2mdT+m@EwF&ZFphrC4X5zT7&VDQ|u>cM!okW42>FPwt2F(&p{{)?shi|R_`ocak|zl(8@ z=msdiVv5uPN_sN!dTLr)dg5)B$E^EJ&Xsu1(QLe7qlZl_a7OF`N29+Kz>=+EZyTtB zW<>m@)nM?D5xV(at{y= zkorzwO>-Wa=1%jgdT{MkzwJQDy`k8vX5%I+7?!)8%i{l0o!oPo_ZF+)8Yh|-qfyyW z95eVU+pmT>;;^$FoDCCA$^!)GKUYu(g1*TM4|3zrTX({+nl1X>#JEZgBzenfcHT=a z`VY&~MDMAd(W(%MxSA%d79-Q|p8v$A31VRCn~paifL6Uzw3Et@6bKYp*C_+~w-m2^NuM2_tQx>HwGrGH;ho2M+YkO#--x5(?&Z_C)U9RbRYncv9Vs6@#~%5!#A?zvpi;LA1*ulJZmWsllT zB6bz}=+fpVV}5|(R8EhF=WCxf#m6T!Ghu;t55uFHO?2I@Tf=C2tQ%XaFC~=GvWD`T zU-QJoo>nCCYpuW@PKOk$`dtrEF7z&M>pXa4Wv~2DuoBv|@=dr_rCrV%(|k8&fgb0Q zhJN2i91!nJ=OSCHn-?EeY{jKuOO1ynwL@h(n9aU_TFxxeKq>caO0TKa0DU=CWzR6n zogFU0Ywpma7KAC*S4iO`dcDP%1T#|JbkZr$J~R8lUrK0|fNsOj1CVG@MZ|}J?u*@O z64FvaJ(Wbz$Q&L{0gC1tH@oq>bK5?oQM=T~%voQdCTWDKYLg}6vAiWpeUq!_SNEGU z@MICF8GIl*da)j{m`dJHro@TbqB;e#FA|nj_qN<|jx@rk`8y-M>MX^t?`7x`#1Ijq zJ{Z#sDZP;@jWO=u1ehPD^cZi*2}^EbgHk+Pu6kwc5U`qk36*CiJNVt?c(xD3(SXf# znvVoX%_}Bjd-OUi!>Yb5^1e(KTUr%fPr1`Q;ArzX()8t_mdo~-bV6U-HgSii2OPrz45-@<>N0onmN4c6Z5}5*z6$_cYg)gd8yUt^Z@j6dv!-dn|TG_)125z?)W2< zHbSN2+jOu0J-X}^Cx9b?((fjSB9`N!^49Jy=V|Dav`NW9*0I24=B(g&c43O(7O0;}C2 zJ;ff1DBHt;XNevE$(Jgh$J5T6iIUvwS>uaqDRl52U@gI2**N`VeC6*$&p4w1^iWV| zI}cilk~j_nI}t*CP#G3-J$!rlkJ|OU#awGkB?OMpFR)x#j!%D1)Lk;c_NcGOXa1w| zzo+Zl&a)e`z`4Q}5+lepJ%5CMW3?IVBBPEIC2KcX+}l!S#r!FTh+(;nD#A1otu$7_ zH=_nQIVt#%7{;wjcQz&t-D+2-KN8#xmG96inYmlEooiaZbyYcl!bR z2IogWiK$8fvThEu(BWnZ=OgpJ2FMEqlQ2E_`diCk`$xNA)&4TSdF~Bv$;Q-*8EwH@ zvCNXXrWxva(GmRWKHj<;j$VTC6YgcxSsK1&`EX-Dg!4w^2u{#EOxnJ@z(oq$QXf@x zyvAjMbGbUB=zR*`lNs9659gcnsL$EK?+Y%v^MQQL+iPst5t4BU2HMnA3P5(j9(;1i zbwa+An|B!P{l_xHissZuZSMlHEyL`%WNfnkKNJfvHDtqU?)VQ1I(_H>T>VP=AacX8 zp1B`tb$+s{^bkch1{SOWX~!D zTHp#n-?4!;mw$J@x)_KdH9AB4AgFU18H> zn&N#&MVVHL4J2V zKYcW7fC_xK?*Lem_hru+a?z#FqF@7BVO3{*9D7&DNiMVxRVH(ImNsi8QyDTE8l2so z%SH^57|0nBwsuVUp1zua+U@mnz>Xrw54#R* z$!-4jEo!iQ_FOklr&etF(3WAX)q@=#vyN9!j2~VDo`uo+dqI*{+7eU_bTHwDRIVd_9(%~o-3q0l^vxbO5wW~ zgXF7YoD6o|4r?1l^Q03Vrr-xW-72b-4yd_TIT2q!)+;FUG6+X401Q79y z(W3^%j$@wHp6I>%VOVjO@z+Na!OwIw>whyIwaz^gtIb6ob}+R1>Rx^ZgHU;7-R)K0 zQO5uKn(~bBJ!~LdmBpx!)6^UcR8|!B=#Fy0-QJkIb;aPo73!y@ScAyzIQj4@02X~B zB5+_f^%D-he;)GBdhYKpEm+of5 zm|rAGX}Bb^A-hb}cr2V!@e)T`1D9;nW1BAANc-xVO2#$65XFqjBR%Pct_s0|fk~Cs z(WPEdDG6FRjJ!s(48plfQ5=`-Dvey&AMeE2R67LYcAJs?;KXDsv_`8s{vA$Ef>#g|j5J0=2; zdWqZ6;x`DKk1aoZR9k{fMwVvECAWlj#hm3x*rzd=SQBT*@isGGgQ+ZpWA(*k{gj@! zQtOe5&QSp+EY&AAmTe{G!CtW8hcknt%WTiw%2<~;W{(|foM@`E+oc=lv?>xkWLDStw;9x#p07xpCbzO_p13i0n{U)mqgI?9mDNE9k@*ya3o?i6JI1?z%?}aVZAd4_mWCPc#a7_*a;rS5qJPIJTVbAec2*xtg(; z<$i+$KhW$ZpiRma0J%cZzD9QABU!Xcg{9SGsvvf-zxX`s-)?(!FSia?Tg@5zwi|Q(`&V^FV27&diH%fIrC-I@9A?h z3d7cMyl1QJD89CQ5SpE?Ha%KNaWw1ECe$lb=I;(Qt3ooWoyZ}P|I;71M=xF>-zZRZDF5aAmY{OO>nghIH;950x}n6pN2 zTW;T`0^$whheCo1t}ky+)6~%kk=?S@5_8Tk5fRcsMLuP|n_!<@Q>$xpc7Rvcn7b==SZO$9H z@JZW-D#TXZ;%gwCT}ZCCkZOQVSzVkB!Ff-coWh-ese;RGCm$wRlyLI0gn!y$rLQK% zR2LX5pcjPn+W+%Q>_?QjIg@{UiLSOqhVjD?r>tx}RYs(H7R$qI2Z&S6MsqI?7V9r@|IgVo!dw8ho97Ssm%9pNEKyaez&2bsGX49EK_M^p zEoL$%?14QMmWp5K-E4T)+0ya?9#NNnhvOc#4->)z>=UEj&9eFEBDK~SY3V15Z0<`Y zIW{*E=7zizL<7^jL(T#AnO!^X2-_uU5PEQ9Da-K*ld@ND&xFHktqaJzDT1MmEm%G= zAY?~EU6+IS0VHx(rIH0GD054V%Shaop(Lx;0EkvpcSvUI_7;kDMShvsJVKF}R;5Yj ze8C56!7g8tcl{pTl$<6V9tEkt-a~O45hZ%gd7RY(?9x0(98LD&*%JYX;@UNI{=P;- z7hw#k-OQ!M00tAX1aJklS?!9kTQIqt7j4;HxLK0h$Jmu%YHvEFP2jby<@Yw1BW&qE8CBRc2S!7GVq$;! zef`8>-EzH*%^zdF!I^dQVXB`>|0jKJr5E+4k_z*0q{*NI`x;`_drW_($`8D`&R-|Q zZs|I?!S&ZsVOQu!b7?b*7RmXjr6hzm(SP%gbo~u)Rl#>-g7Vb#vmghqzv?|`hVZ=^ zKi%JY&u1=aly8;P*57d#%QLKDau$Dh8C$lO%iVVmG}g{ARvKQMVv^B6v1eZvYj&RR zhE9N(4JfK6R|QU&cZ!!($pmz?s1uTi3bu)ey1=9^x^&RvMG>gd-id-y@Qo0}o``*x z5pn7Rh%hQ_C?h}^YMpUSnU}d{ImDDOhpgBW)0vdPb(u?O`lY<@?C{=clUN1)JB}FKEufbfC^(qH!B3ZocFv&OiqT6h_qiDIsA2ZeN2~JQc-& z9->V5k}So*o5tfc&mAsUOgkaDuan_?y%Njt8fu&D{2M&ScyGh$d_r61Ur|{R{4($G z!}7*9tY*bM9Wgb*>}B#cE{794jJicBqux{HAHqJ9x)t$@r7M|z;IERHDS?(p&RJRd zDEaG&(JnD0C%7}u{kP6mSZS5?ZHNRw2!c#ACRYc^;2#Le%-qnsPM>K5=46D6v9i2W ztpr$rgXfbZeZ^(ss*#+jl_IPKF(*CH8WiX2Y$hz{k;6#(%+hPD32R% zY3pV(uRUz{cal@Ku7F;Xuf1CGj+CSuRP*0npXckWg}G@Z@JnQ^nmh%-%6BnO`o1?$ z81AsA9wNMqI?OD|apd?H^+T)Dld4$g6iQ77%y@l|UoSySO$dTiNimpg)Ayb>4vG1+ z%?_w8?Pk9stC)xlhr?zu&%YWvFIe-$VlO?p)$n^c7a5x~HfQ^A=oRdQAN`CwNdc>@ z0P1ezw_{H!2eXhgpG^!|MT!1Jgl7m z)%*7XCY;<{EdOgB{!^nM_2M3|LA$|1OG<_)78B|w{k7>25E1wb@w1)@7y2xfDt&%x z=%;o8>@3{|SwVkbtn1W==efbjCWo#6O_#5bZ_kVO*1^+flG)v(c{S=cWhzL*L6{w! zM6eOtL%bMpNXXDfC`iaCZthzXTA0HvAX)@C<`INgFV#DaFfkld(F_X|5I$~BxEI`} z1{o|76^xP|96bdU6$}<0mj4k4HTYBSAZWu_6AURJ2p=(+jXJ^ks4}RaDo|ryV z*#6&eh!3HC_F#)Z7+PUDneQa~!5t`I1JwcGeaHY7c4SlBSa-@%npBAG6=eEpSZ z4lgJVwQwhUm)796A?qYlf}Z=U3J!(H9dYUiFoQ%pME$!yJa_UK$WdX9p}yvWeN!gD z%{dg>_-*pzE|25+IthppR1T)=OB&Q$yVbLmTeuGj3*z&7hk1Vq2+s1ciPk;-8HoGA zM?({F3FdVZEDq*}A}$P;Ncv1h4S>CTvm~$wo?hTWe3Wa1=}~~8yvxT3mIf-E-fMyB z2Tt}OJz6p=KCGdcs*`|4CGcP*oJtyvlr2VgMHOPK4Xp)cz)RqS=_(C#I(-~ zJgvRy(`hqSj4xr zMD}xV|L=&`ZVfCN=E1z2qn`UK;y#OIyQL<`?MwNp(Pn6z;xq92)CkcxqZtGRDE_fm z2*m8v-2YTsdeXs^*|-84 z*y}^?MN__wi)9K!!(zyu`}q~ieqyLQ_Lz&4BBn?%e$C7K9|Mf4Y+ID?XuFrr4mR>$Jd(@HboI|7yYJNjR0MiGs5-6HG1WFh(I*J zjZ;U&KqD+Kf9m}G79u{#l)4jKM;p?DT=k@7RoY!__b{K-vX*iUg<0umI-#mqD}K`R zsID=iQ!Q>)EJDM+&U)U=&rLtfa{V`VXZjU;Zetj`iCm(RC0A*#x}_g@@;T;zO2_ zJW<0Nlj0-D2u^V!2D`?2l;;c2Y`eHHp>@ar*lO#STMKll2xg7Y)|@N3T=h{u;gGrn2-ZEgjGZIM4FP@upClXimA15y@26YUU1rGxuCYn)Eoz5{nnF zJ03M6=RWx{+!-;pFAuHVv3ptgZ603>4+(zS!L{;M!yt#}YYN_+xo-U$i6UCV&>+sr zf{8{qy%|P=JdI;**YJK=Dz@+wOQ=wPG6um*rkcSbt-)qOKNF81m+>Ao$4a6=eh}SaU(^843U%7kA(0&H68_{KErlX8{R0+X z&@J9|-x{Ywpb9bw&0FbEQ(Kq4r>|J!9ms#2ux;~Mh!y^%ha~O2uJ;(v);S5l)~Rj} zwQL}cnXZFm(G@6$%>R#Z6vNRf6u6P_+7{ssQ+F>_Ao20$pw<`zXF z7CnYC*BsjJBIDbV>*w|>uJ&WXRW7#oiKXtw{#0y7EQipg22!vB=u8GDuOcI3EN$u2 z$znUTKTRDatD93n1ofDSF1rJ82-IHs`fN9~s1Mz)5+&$~PX6}#Ogqpf5bm(fmHrq_ zZh9=|!GQP8jCs;u(}Z=gNRNs+z4%+wlk*^zYH9j zP}6e!4`8kM_ZO8x-()?;(Y3R9$ei^TXPZfLF`skxeml{Dg-+j+aWRri*>5ft;m*)f z6`}*GNXM-Us@=R>DDl3k7PDxqj#=gR?J@@}0w(gv2|g8%FKIIsSANe@5cT_XUGrPD zmKOGx{yyVr^tngOfz3kFrGB~O8Q%oHtpKsshyt`dxT4(?sX86U2O3Uv>YV>j^e1-{ za`*FDn&y=HBKe))Z@^+3q1jC5Zpf)14-BXE_t1QpKJmr3?BtH0*(rYh6+Xek|0-Ds zivDW12S;B<4yl*pg1U(iK#em4zBDWz9u2zzL%B*_dxx!ICJCa5bjDZzfzme6C2)~Y zqhT>Kxv^T|op@hEmPF_JdY4^4nJ!|T9f7;+4E}t>o(clAbEDXyP06pwK>z7v*y>XU zHk1?JKc1ND+98wwa6K^~{wu@TcjCQ`j@Wfu>nTeoaLXPalL}LXd!zJq)r+DO-?8gQ zqv@XnEMW^9+?mnIZaz0qU`G&!Yb_%0 z6Qy|QuWCvh$!kbr`V2IaMG=Edaw;DyOn&K3!rG?cZ6UM4j!YemieH@9R#!pbTT2h_ zsg2~5XJkWrs!HP_z`AX8g440_lBcUy2cAE^4)&`j(50JTS&RUy>0K>~3z)!CB$hJV zf=553Wv(!r1px#LyJ*1#f_)=Xt~fP>X{C75v?YZiOJq%@SHy&88fjc$SQRDT$YvPB z-hh>g1-8k47*{|aQ!iJ$3fxx-=a*KO7}i&)KK=Gb80ZkTxGYHWS@^PJ9L=ULHF#O3 z1>EQXgaXt4p|vHjZozptaoBAuEL<8wWi^**6jlo8XKxKWm@*iY-6*5UD*XNQx&+(C zyX%ug{(0zGjOI+ad`C{rAgot0F|HKHlkQ%E5;<;cHh1hHfnCS3^CG^Q7a}ig{(7!& zwu~B*Z5Qj~#pZF}O9Hb5QpfYo@hL0gY4-7cd#ogKZ&BOHmD>ZZni96WtZ%Du%lJ6P zBHQa5g4XyJR%RED(UZKtI#S3I0VNyPvBvEA8JV7=?1v-W&dL)+dUm<|^v6||5;ODX z&mJddlRe7*geoCYB`DGyE$*Y5s7A+CDMD9~yAobwh2t?1dHEmGN%eu&rFJ3pQ1l-4Z3OLHI2V7S>i5kijT-rWX zLq~ooRSGS|F^PZP1IRTIAsA^47yHKChA%eqJ#>(ta~sI+qYtar)GYY=)OQh14^SqZ z8?TBl2R1H6j3H-UossYtL>3L+TojeMQl;Z4G|Jah8CeK8;o6ma$urvt=kqTPR9bCF zm7SQ-d}2RltcG~}qUqRkw*F3eC+Sq}MCn*tQ!>|HlTNn&)S3s!V=g*(BQi;mpGhMY$*vkwzL z06IsU1j%pwmRPExc9?hzkR3OL4i}q&$SQ3)WC+4TKPQ`RxDY@`g4iTPSPN_4!`~EV* zmLezKE7Wnwb>kSvnEYsce8|Ae7@R09V7UQ2FP5H5{V+q}&@Hq^w7ld5WwJIUw~3q9 zfe#VJ;_p=l5|*y>c}lu*nL>SHsRhMw{ql@LIijS zHdl^Xn`M?YEk^v@L!lU&eh|8sI(vVY29&P8flTZ@+;<6icS;SkRJb_AOer~3IQgD8 z&B$341E$YZ#?%|nG0;+nLv*P`Lx*p}vKQT=ByULst#X(E0mE|2^Yp!pNTdnA1`>qb zs6_%X+3M(+)gjhTm$|Sv2Lp`{B*SzM)Y9UsAdZ>~55|CgpAQ)nwdodr9;P1FddxrA z8-FIsz(`D3M*}~%Ih9fy-n2a4kVKGWg7R$ zbE-tY?FJzN1vm7{X*i?(G~0P!v8Hgs7Olf<>mD0gAvgd_{`x)ShB9q9d)b%pJ`|s$ zPj1thL$S{Yc$gt7EA-+R$sf|OGz1*gXXVPZRJ47X*AUc4uv4@?gVVcK&)V34ChDdV zn1@tkAzs7ATY);`Uhbe_IkcUxns3QgW3w!K$bQHn*06ta@*Imx^R3iNmCLms=2&ZFUzl&>=pPYPPFkN{Zm{U4LsNN^#&;Dv)_133xYucy>U` zT15XiFW62HHMd@L_e$G?x(gzQGf5BaNM)GphS=^n-pLepb&>d!z~sGnUd2(Hnfq-r zS*AY8>?0!+8N5})0D8{yZh?_SXv(sq&CHvC(yu1BCzuVYG#{28&tQjNs!n7upho;t z9oRc*s0*^rQg6;sx&+yg47QVq7vJ~TxhbMFN@bX+1GSFlyd(S zZ$oER6e77umuNV!5nCG%>$;6tx`*}AW#s3G~XOzW=f(OoB`W1w$baH?E1~G2fDQ2>Dg)*|C;sdu~*RVp*owiYv)4BagG(0xytM_n(rW8>A#b; zeky)AFty6!Jc$nR2f^XX9jvCSyqJA)Mqz=afir_~)bnkaNc2`&7MYj*uq6mJS-|1# zWNW>re3@G4A~zJi$16bx#77awH#_G^e6H+2UeTv_e1!%sJ$IpvzU}IQa?PVzGpW_(##d3_SI8aagwY+XU=4v2-{FQ7nw(c~nyL*r_gOd*7*NSI?v z&4PkjHK0yQI19|^Gz9Avh`NuAQb@He;3CCdkf1sY*z)}#0WEd=if)HfV0do zqnZ?1!;w(0Hf|e3ZjIJR;;tkO#|FDvpqiNVlhJ}|kl#`3vl!_d2jQ%Y<{B3k`O=ZA zH|G15FOJ1FLIdS&{9NHf`HX#Ydz_Eq>M4;={W58UR|JYDo=__OK*Z?j4U%@qZBS}&_Q8PN&IwCzy^A|_KMwu~N`Xr0>{8eX``$U>B z;LP-FyT+D~IWOfo3JS@$`rR{&<=v>33>@OF-@Ki8CM8B=qd%m33@B63!5f!zzRYQL zJw(CNQM}vfi4pLg2&jFW%bzXEP;I4GY*@+=V?o0U$@0|C=J61rvR&nZDLS}oRsol- zudJg}4R=iO)oJOtYAv{^T2BpeXr!(lg>v6EGf5m4&3cB6x;-U3CQg-&)k|P>?nDfQ zxcp@~Q(Ha^BG`ViXW2u)RxBM7RWP1Z9gSdSUS-H|)oqHlS#-#G#xC;-MaA7=M4%4x zBMI5pU6B9A%+nWg95EgieV#myx!9=7%nN3GCkn{>dP2qVOAt~%;*R&H)mAoc5{`?` zfKw9g?c|mHF(&@redw;hQXm6hT{z01<1fv83A5~dN84k|Kx@^NUPxq?PmBKMgZKva z6idz?QM0Z&XQr5eeUaYk_Cn~Ad@LkoJEIG9iH<$Ww^MX$2Lmdo-e0(zr%`p0Fv=kE z{YBms1q&*H%1VNk{uH|6lv?`;u=kgQ1TL@hz%Q$s8rEyoT)wpeX0X%_Dv3hwt@%wQ z0@Yu>@xh5`1XbuXIKH%*M4a7w_ACjI1w_A9#bStfj&N8p&r`<1XHbm68& zBl^V7i8sNn_{O5f)2Dg#-FVPP5 z5$kyEwuFX^lfVoJ_KVu0mf+?XHD*T`*dE!ybvr#@iHRcTVu;~cliub!}|8YMxbhz+ApIr7e1IKRDc60RG zZ@{KgsH7kKXy*O_0WRI!^L#-=XURpIJpY9x_m{6($GR@sNVXA5?OshcNjM_oD!Z4$ zN86d+U=YbSR#dQP;tnqQ1_lB!J-bosHfv3I;fl-$t?9b)jStQ^YOsG(v5(oKrY#x| zS;YedxQ{gIlDY85DJwLOS2eHjeZ(~Cdc=XLJ<%lRffht6eFfE}Vuri~6REd3)x+l4 zY}d)DB0&Y?wx6jQ+qj9MhXEnZoe9AsiTd{rxeLD}!&b7|-N3~Qi&#W1+(Pozabj#w zo?$H=87%Tb1d#WADMv+%LwunkY4L|{syM#2{8i#PC6nX#DOzhp*Ok3XS~y24xX`mP zZ16hsl=6sveFB%z7{tJlbiZYmgR%QX!l0&eilAN(rAV&W6^-~c@Df(&&dPH0%&#+e zMN^`UjcLzop7QyaFlfDLyplwA&B@)D;Vj?b&~T)<`Y7j3!<%eT<1+Q~dGI}MZs5tQ zRuO%Heyty(++aboncmc*@CjpsM5kKkM6#{vCr2zh?#czX>1Y}+jk`#hVTrgGq#1k{ zx^@!-XWH-K&HbU_Zcz~~%vr6MLYNx@%3m7^YAEh@(}dE|J#HJ6SoP-F*j#Smzoi`h zUT0^E`ITor8br&%XQofkG^Um~nolv*Jis6>Kx<9M=9m2{qBG-W+2kMQyL3P~W~qH! za;T<@1N$XD|LNd&mqyPGH*4My=F?ATwU^psfO7T zLj1FK^b6o)CXga%FvHYB=p#~6>!kShbV5#-toph?FU3q*YUe_FG``eEq=x(yHcu!R zbDkJVpb=?PZ%QP&Farq~`U!@m?tJ)dUVrG%9IH$>=gaaCr?1Plqo$rn-W+F4bHzq) zWf{VAd?V+mv(f#Hqj{ zjuMHvT&=0}hBNg$+8O~lanYu*232@tW8TP-EgnMw`HD%&>08akPbVjK>+u=_$)4Ix zkNT?fEy{ZlUItx_G6@Q8k6ds-uHh@nHJ)nCe_+!%{*6r&ad)$FbfKkVR=0Mu1AU&= z+)ZsjW^SJ?F&B`D+vh!b6LpX_si(D@6{(fC6UfB{WI^g=VrFY%38G_Gc5yU!Hv_rQ zI+(k|uVpAb4hFbqQ^Nq`RG+sfmLF$c2wa!ob&u5dj_5hK7E{c;`#Kp|&v+LmQ zMMrAuWa4J!3Nj(}_`gGN0$2g8bnt?L|M=9=)CT_F9jX558d7E@QyVomdw6C=QdTZ_ zW=U%oS2t1?p8v;FlCl7~c>cF^WVPm+>aHZJ|B}`%h5A_5OSO${Wm}aFdZThAsx}Ua zE*q{!?0zyN+0(PzIBPc~jdKGEeq6`2+r!ZjaU3)0T^Svx|Hh*NRLml)DIAR7xNccFhJbB zza}70!Wid?oBH%e4yW_#{2#dVx^eCF=>^(F>2|D~!54BNMkA9Em3%@aI-5R!`p|Z{ z8TqgiI>r!B;%@foS78ersK${g4PzEhw5GFqw-TG|^;tWL zO?i2S*(p_{*^va|A)$9kSjyDT8Opyw!c8){(?t8t7z|_fTnDLvSw*fMDrrTGoIvq} zVSi(-tL9)p%|2MK#cqTS$2;^u>&UXRAD!gY^(Ii2bm>H*`vu-b&~XW1&cGOH6Keouxs zVGdWq6BUh#tcI+mneVQ@m zMDr9jhyCRa7t_++}?p>0y z7ox|nHzFRw#emkc#J@2_JKG<1I|z!LcKh@2D`HpZD_?R;?R4cS7_Q29<#HN2yg-v? zSQNGa3@aq{^h=Rz29aCqhDgt4;(p^6J0GQM3XCZieQWjy-y1^&>gjw9c6U9uZ>V0b z=AOWw%v;wg=7gDXdB>fd3;}RtogbRHK71uQ8vKJAywN>MF!ln0wyR3$g-HWHEum+Pd0&5Cvv6EPOuDR znlRV%bDJ}HJ-=Z$K0HH z5(1Ax_(J?2;Qrs$U;c$s+NvN6cxD*~bC4IQ9*~rc%K)BP&Dsa_*@9=*BGqFdWhG_# zyr$~t=tj!M{uwS*|1r04BxU;t^8V?Flj`xaaHloYXCzvx!+I>b0agdp#Ip`nQb#?m; zN%rtwt61aXNFiXD;=l1AB`}p=Nn4D`sE3fNdVk?B*B2pC5ZKPYVAFVVQXHkzjsu4w zu5Yn9R4e1Z8;1+v6FU7uW^!RvF%E046bvX~p0?UQ5zu|%5a%KuKg6bS<9@kG?BRL? iHxPtt{qN3nbu)2s^ZJZ{@a*htoUHIvR1!*(@c##45Pu{9 literal 0 HcmV?d00001 diff --git a/diagram_proborders.tex b/diagram_proborders.tex new file mode 100644 index 0000000000000000000000000000000000000000..db34ab31bd2dfa4e3bf8c71158806d1d8712a7c2 --- /dev/null +++ b/diagram_proborders.tex @@ -0,0 +1,59 @@ +\documentclass{standalone} +\usepackage[T1]{fontenc} +\usepackage{amsmath} +\usepackage{amsfonts} +\usepackage{parskip} +\usepackage{marvosym} %Lightning symbol +\usepackage[usenames,dvipsnames]{color} +\usepackage[hidelinks]{hyperref} +\renewcommand*{\familydefault}{\sfdefault} + +\usepackage{bbm} %For \mathbbm{1} +%\usepackage{bbold} +\usepackage{tikz} + +\begin{document} + +\begin{tikzpicture} + \draw[gray] (0,0) -- (10,0); + \draw[dotted] (0,2) -- (10,2); + \draw[gray] (0,2) arc (90:270:1); + \draw[gray] (10,0) arc (-90:90:1); + \foreach \x in {0,...,10} { + \draw (\x,0) circle (0.04); + } + \foreach \a in {-3,...,3} { + \draw (10,1)+({\a*20}:1) circle (0.04); + \draw (0,1)+({180+\a*20}:1) circle (0.04); + } + + \foreach \x in {0,...,10} { + \draw (\x,0.3) node {$\x$}; + } + + \foreach \x in {2,4,6,7} { + \draw[fill,red] (\x,-0.5) circle (0.05); + \draw[fill,blue] (\x,-1.0)+(-0.05,-0.05) rectangle +(0.05,0.05); + } + \foreach \x in {3,5,8} { + \draw (\x,-1.5) circle (0.07); + } + \draw[fill,red] (9,-0.5) circle (0.05); + \draw (2,1) node {$I_\mathrm{min}$}; + \draw (9,1) node {$I_\mathrm{max}$}; + + \draw (10.7,-0.2) rectangle (12.0,-1.8); + + \draw[fill,red] (11,-0.5) circle (0.05); + \draw (11.5,-0.5) node {$I$}; + + \draw[fill,blue] (11,-1.0)+(-0.05,-0.05) rectangle +(0.05,0.05); + \draw (11.5,-1.0) node {$I'$}; + + \draw (11,-1.5) circle (0.07); + \draw (11.6,-1.5) node {$I_{><}$}; + + \draw (5,1) node {$k$}; +\end{tikzpicture} + +\end{document} diff --git a/main.tex b/main.tex index 4a752e8629e9bbec80f1e7de0c4a2370fbc6ca32..943d2bd865a982b579dd94ffab5d08ebc1450288 100644 --- a/main.tex +++ b/main.tex @@ -422,51 +422,51 @@ It is useful to introduce some new notation: \caption{\label{fig:separatedgroups} Illustration of setup of Lemma \ref{lemma:eventindependence}. Here $b_1,b_2\in\{0,1\}^n$ are bitstrings such that all zeroes of $b_1$ and all zeroes of $b_2$ are separated by two indices $j_1,j_2$.} \end{figure} \begin{lemma}[Conditional independence] \label{lemma:eventindependence} \label{claim:eventindependence} - Let $b=b_1\land b_2\in\{0,1\}^n$ be a state with two groups ($b_1\lor b_2 = 1^n$) of zeroes that are separated as in Figure \ref{fig:separatedgroups}. Let $j_1$, $j_2$ be any indices `inbetween' the groups as shown in the figure. Then we have + Let $b=b_1\land b_2\in\{0,1\}^n$ be a state with two groups ($b_1\lor b_2 = 1^n$) of zeroes that are separated by at least one site inbetween, as in Figure \ref{fig:separatedgroups}. Let $j_1$, $j_2$ be any indices inbetween the groups, such that $b_1$ lies on one side of them and $b_2$ on the other, as shown in the figure. Furthermore, let $A_1$ be any event that depends only on the sites ``on the $b_1$ side of $j_1,j_2$'', and similar for $A_2$ (for example $\mathrm{Z}^{(i)}$ for an $i$ on the correct side). Then we have \begin{align*} - \mathbb{P}_b(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2}) + \mathbb{P}_b(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2}, A_1, A_2) &= - \mathbb{P}_{b_1}(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2}) + \mathbb{P}_{b_1}(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2}, A_1) \; \cdot \; - \mathbb{P}_{b_2}(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2}) \\ - R_{b,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2}} + \mathbb{P}_{b_2}(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2}, A_2) \\ + R_{b,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2},A_1,A_2} &= - R_{b_1,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2}} + R_{b_1,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2},A_1} \; + \; - R_{b_2,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2}} + R_{b_2,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2},A_2} \end{align*} up to any order in $p$. \end{lemma} -The lemma says that conditioned on $j_1$ and $j_2$ not being crossed, the two halves of the circle are independent. +The lemma says that conditioned on $j_1$ and $j_2$ not being crossed, the two halves of the circle are independent. \begin{proof} For clarity we do the proof for the infinite line, when there is only one index. Simply replace $\mathrm{NZ}_j$ by $\mathrm{NZ}_{j_1}\cap\mathrm{NZ}_{j_2}$ for the case of the circle. - Note that any path $\xi\in\paths{b} \cap \mathrm{NZ}_j$ can be split into paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}_j$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}_j$. This can be done by taking all resampling positions $r_i$ in $\xi$ and if its ``on the $b_1$ side of $j_1,j_2$'' then add it to $\xi_1$ and if its ``on the $b_2$ side of $j_1,j_2$'' then add it to $\xi_2$. Vice versa, all paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}_j$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}_j$ also induce a path $\xi\in\paths{b} \cap \mathrm{NZ}_j$ by simply concatenating the resampling positions. By the same reasoning as in the proof of claim \ref{claim:expectationsum}, we obtain + Note that any path $\xi\in\paths{b} \cap \mathrm{NZ}_j$ can be split into paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}_j$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}_j$. This can be done by taking all resampling positions $r_i$ in $\xi$ and if $r_i$ is ``on the $b_1$ side of $j_1,j_2$'' then add it to $\xi_1$ and if its ``on the $b_2$ side of $j_1,j_2$'' then add it to $\xi_2$. Note that now $\xi_1$ is a path from $b_1$ to $\mathbf{1}$, because in the original path $\xi$, all zeroes ``on the $b_1$ side'' have been resampled by resamplings ``on the $b_1$ side''. Since the sites $j_1,j_2$ inbetween never become zero, there can not be any zero ``on the $b_1$ side'' that was resampled by a resampling ``on the $b_2$ side''. Vice versa, all paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}_j$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}_j$ also induce a path $\xi\in\paths{b} \cap \mathrm{NZ}_j$ by simply concatenating the resampling positions. By the same reasoning as in the proof of claim \ref{claim:expectationsum}, we obtain \begin{align*} - \mathbb{P}_b(\mathrm{NZ}_j) - = \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}_j}} \mathbb{P}[\xi] - &= \sum_{\substack{\xi_1\in\paths{b_1}\\\xi_1 \in \mathrm{NZ}_j}} - \sum_{\substack{\xi_2\in\paths{b_1}\\\xi_2 \in \mathrm{NZ}_j}} + \mathbb{P}_b(\mathrm{NZ}_j,A_1,A_2) + = \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}_j\cap A_1\cap A_2}} \mathbb{P}[\xi] + &= \sum_{\substack{\xi_1\in\paths{b_1}\\\xi_1 \in \mathrm{NZ}_j\cap A_1}} + \sum_{\substack{\xi_2\in\paths{b_1}\\\xi_2 \in \mathrm{NZ}_j\cap A_2}} \mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2] \\ &= - \mathbb{P}_{b_1}(\mathrm{NZ}_j) + \mathbb{P}_{b_1}(\mathrm{NZ}_j,A_1) \; \cdot \; - \mathbb{P}_{b_2}(\mathrm{NZ}_j). + \mathbb{P}_{b_2}(\mathrm{NZ}_j,A_2). \end{align*} For the second equality, note that again by the same reasoning as in the proof of claim \ref{claim:expectationsum} we have \begin{align*} - \mathbb{P}_b(\mathrm{NZ}_j) R_{b,\mathrm{NZ}_j} - := \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}_j}} \mathbb{P}[\xi] |\xi| - &= \sum_{\substack{\xi_1\in\paths{b_1}\\\xi_1 \in \mathrm{NZ}_j}} - \sum_{\substack{\xi_2\in\paths{b_2}\\\xi_2 \in \mathrm{NZ}_j}} + \mathbb{P}_b(\mathrm{NZ}_j,A_1,A_2) R_{b,\mathrm{NZ}_j,A_1,A_2} + &:= \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}_j\cap A_1\cap A_2}} \mathbb{P}[\xi] |\xi| \\ + &= \sum_{\substack{\xi_1\in\paths{b_1}\\\xi_1 \in \mathrm{NZ}_j\cap A_1}} + \sum_{\substack{\xi_2\in\paths{b_2}\\\xi_2 \in \mathrm{NZ}_j\cap A_2}} \mathbb{P}[\xi_1]\mathbb{P}[\xi_2] (|\xi_1| + |\xi_2|) \\ &= - \mathbb{P}_{b_2}(\mathrm{NZ}_j) \mathbb{P}_{b_1}(\mathrm{NZ}_j) R_{b_1,\mathrm{NZ}_j} - \; + \; - \mathbb{P}_{b_1}(\mathrm{NZ}_j) \mathbb{P}_{b_2}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j} . + \mathbb{P}_{b_2}(\mathrm{NZ}_j,A_2) \mathbb{P}_{b_1}(\mathrm{NZ}_j,A_1) R_{b_1,\mathrm{NZ}_j,A_1} \\ + &\quad + + \mathbb{P}_{b_1}(\mathrm{NZ}_j,A_1) \mathbb{P}_{b_2}(\mathrm{NZ}_j,A_2) R_{b_2,\mathrm{NZ}_j,A_2} . \end{align*} - Dividing by $\mathbb{P}_b(\mathrm{NZ}_j)$ and using the first equality gives the desired result. + Dividing by $\mathbb{P}_b(\mathrm{NZ}_j,A_1,A_2)$ and using the first equality gives the desired result. \end{proof} \begin{comment} @@ -528,10 +528,16 @@ Consider the chain (instead of the cycle) for simplicity with vertices identifie The intuition of the following lemma is that the far right can only affect the zero vertex if there is an interaction chain forming, which means that every vertex should get resampled to $0$ at least once. \begin{lemma}\label{lemma:probIndep} Suppose we have a finite set $I\subset\mathbb{N}_+$ of vertices. - Let $I_{\max}:=\max(I)$ and $I':=I\setminus\{I_{\max}\}$, and similarly let $I_{\min}:=\min(I)$. + Let $I_{\max}:=\max(I)$ and $I':=I\setminus\{I_{\max}\}$, and similarly let $I_{\min}:=\min(I)$. These definitions are illustraded in Figure \ref{fig:lemmaillustration}. Then $P_{I}(Z^{(0)})=P_{I'}(Z^{(0)}) + O(p^{I_{\max}+1-|I|})$. \end{lemma} \begin{proof} +\begin{figure} + \begin{center} + \includegraphics{diagram_proborders.pdf} + \end{center} + \caption{\label{fig:lemmaillustration} Illustration of setup of Lemma \ref{lemma:probIndep}.} +\end{figure} The proof uses induction on $|I|$. For $|I|=1$ the statement is easy, since every resample sequence that resamples vertex $0$ to zero must produce at least $I_{\max}$ zeroes in-between. Induction step: For an event $A$ and $k>0$ let us denote $A_k = A\cap\left(\cap_{j=0}^{k-1} \mathrm{Z}^{(j)}\right)\cap \mathrm{NZ}^{(k)}$, i.e. $A_k$ is the event $A$ \emph{and} ``Each vertex in $0,1,2,\ldots, k-1$ becomes $0$ at some point before termination (either by resampling or initialisation), but vertex $k$ does not''. Observe that these events form a partition, so $Z^{(0)}=\dot{\bigcup}_{k=1}^{\infty}Z^{(0)}_k$.