Changeset - 0cd16f2a5013
[Not reviewed]
Merge
0 2 0
Tom Bannink - 8 years ago 2017-09-10 16:10:16
tombannink@gmail.com
1 file changed with 3 insertions and 1 deletions:
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -176,9 +176,11 @@
 
		\item $\forall k\in\mathbb{N}, \forall n\geq 3 : a^{(n)}_k\geq 0$	\label{it:pos}	
 
        (A simpler version: $\forall k>0: a_k^{(3)}=(k+1)(k+2)/6$)
 
		\item $\forall k\in\mathbb{N}, \forall n>m\geq 3 : a^{(n)}_k\geq a^{(m)}_k$ \label{it:geq}		
 
		\item $\forall k\in\mathbb{N}, \forall n,m\geq \max(k,3) : a^{(n)}_k=a^{(m)}_k$ \label{it:const}		
 
		\item $\forall k\in\mathbb{N}, \forall n,m > \max(k,3) : a^{(n)}_k=a^{(m)}_k$ \label{it:const}		
 
  		\item $\exists p_c=\lim\limits_{k\rightarrow\infty}1\left/\sqrt[k]{a_{k}^{(k+1)}}\right.$ \label{it:lim}			
 
	\end{enumerate}
 
	\colorbox{red}{\ref{it:pos}-\ref{it:geq} is false since $a_{1114}^{(10)}<0$ -- needs to be double checked!}
 
	
 
	We also conjecture that $p_c\approx0.61$, see Figure~\ref{fig:coeffs_conv_radius}.
 

	
 
	\begin{figure}[!htb]\centering
0 comments (0 inline, 0 general)