Changeset - 22f6c0c40897
[Not reviewed]
0 1 0
Tom Bannink - 8 years ago 2017-09-08 14:41:09
tom.bannink@cwi.nl
Add more event definitions
1 file changed with 9 insertions and 29 deletions:
main.tex
9
29
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
\documentclass[a4paper,11pt,english,final]{article}
 
\pdfoutput=1
 

	
 
\usepackage[utf8]{inputenc}
 
\usepackage[english]{babel}
 
\usepackage{fullpage}
 

	
 
\usepackage{graphics}
 
\usepackage{diagbox}
 
\usepackage[table]{xcolor}% http://ctan.org/pkg/xcolor
 
\usepackage{graphicx}
 
\usepackage{wrapfig}
 
\usepackage{caption}
 
\captionsetup{compatibility=false}
 
\graphicspath{{./}}
 

	
 

	
 
\usepackage{tikz}
 
\usepackage{amssymb}
 
\usepackage{mathtools}
 
\usepackage{bm}
 
\usepackage{bbm}
 
%\usepackage{bbold}
 
\usepackage{verbatim}
 

	
 
%for correcting large brackets spacing
 
\usepackage{mleftright}\mleftright
 

	
 
\usepackage{algorithm}
 
\usepackage{algorithmic}
 
\usepackage{enumitem}
 
\usepackage{float}
 

	
 
%\usepackage{titling}
 

	
 
%\setlength{\droptitle}{-5mm}  
 

	
 
%\usepackage{MnSymbol}
 
\newcommand{\cupdot}{\overset{.}{\cup}}
 
\newcommand{\pvp}{\vec{p}{\kern 0.45mm}'}
 

	
 
\DeclarePairedDelimiter\bra{\langle}{\rvert}
 
\DeclarePairedDelimiter\ket{\lvert}{\rangle}
 
\DeclarePairedDelimiterX\braket[2]{\langle}{\rangle}{#1 \delimsize\vert #2}
 
\newcommand{\underflow}[2]{\underset{\kern-60mm \overbrace{#1} \kern-60mm}{#2}}
 

	
 
\def\Ind(#1){{{\tt Ind}({#1})}}
 
\def\Id{\mathrm{Id}}
 
\def\Pr{\mathrm{Pr}}
 
\def\Tr{\mathrm{Tr}}
 
\def\im{\mathrm{im}}
 
\newcommand{\bOt}[1]{\widetilde{\mathcal O}\left(#1\right)}
 
\newcommand{\bigO}[1]{\mathcal O\left(#1\right)}
 
\newcommand{\Res}[1]{\#\mathrm{Res}\left(#1\right)}
 

	
 
\newcommand{\QMAo}{\textsf{QMA$_1$}}
 
\newcommand{\BQP}{\textsf{BQP}}
 
\newcommand{\NP}{\textsf{NP}}
 
\newcommand{\SharpP}{\textsf{\# P}}
 

	
 
\newcommand{\diam}[1]{\mathcal{D}\left(#1\right)}
 
\newcommand{\paths}[1]{\mathcal{P}\left(#1\to\mathbf{1}\right)}
 
\newcommand{\start}[1]{\textsc{start}\left(#1\right)}
 
\newcommand{\initone}[1]{\textsc{InitOne}\left(#1\right)}
 
\newcommand{\maxgap}[1]{\mathrm{maxgap}\left(#1\right)}
 
\newcommand{\gaps}[1]{#1_{\mathrm{gaps}}}
 
\renewcommand{\P}{\mathbb{P}}
 
\newcommand{\E}{\mathbb{E}}
 
\newcommand{\NZ}[1]{\mathrm{NZ}^{(#1)}}
 
\newcommand{\Z}[1]{\mathrm{Z}^{(#1)}}
 
%\newcommand{\dist}[1]{d_{\!\!\not\,#1}}
 
\newcommand{\dist}[1]{d_{\neg #1}}
 

	
 
\newcommand{\todo}[1]{{\color{red}\textbf{TODO:} #1}}
 

	
 
\long\def\ignore#1{}
 

	
 
\newtheorem{theorem}{Theorem}
 
\newtheorem{corollary}[theorem]{Corollary}%[theorem]
 
\newtheorem{lemma}[theorem]{Lemma}
 
\newtheorem{prop}[theorem]{Proposition}
 
\newtheorem{definition}[theorem]{Definition}
 
\newtheorem{claim}[theorem]{Claim}
 
\newtheorem{remark}[theorem]{Remark}
 

	
 
\newenvironment{proof}
 
{\noindent {\bf Proof. }}
 
{{\hfill $\Box$}\\	\smallskip}
 

	
 
\usepackage[final]{hyperref}
 
\hypersetup{
 
	colorlinks = true,
 
	allcolors = {blue},
 
}
 
\usepackage{ifpdf} 
 
\ifpdf
 
	\typeout{^^J *** PDF mode *** } 
 
%	\input{myBiblatex.tex}
 
%	\addbibresource{LLL.bib}	
 
%\else
 
%	\typeout{^^J *** DVI mode ***} 
 
%	\hypersetup{breaklinks = true}
 
%	\usepackage[quadpoints=false]{hypdvips}
 
	\let\oldthebibliography=\thebibliography
 
	\let\endoldthebibliography=\endthebibliography
 
	\renewenvironment{thebibliography}[1]{%
 
		\begin{oldthebibliography}{#1}%
 
			\setlength{\itemsep}{-.3ex}%
 
	}%
 
	{%
 
		\end{oldthebibliography}%
 
	}
 
\fi 
 

	
 
%opening
 
\title{Criticality of resampling on the cycle / in the evolution model}
 
%\author{?\thanks{QuSoft, CWI and University of Amsterdam, the Netherlands. \texttt{?@cwi.nl} }
 
	%\and
 
	%?%
 
%}
 
%\thanksmarkseries{arabic}
 
%\renewcommand{\thefootnote}{\fnsymbol{footnote}}
 
%\date{\vspace{-12mm}}
 

	
 
\begin{document}
 
	
 
	\maketitle
 

	
 
	\begin{abstract}
 
		The model we consider is the following~\cite{ResampleLimit}: We have a cycle of length $n\geq 3$. Initially we set each site to $0$ or $1$ independently at each site, such that we set it $0$ with probability $p$. After that in each step we select a random vertex with $0$ value and resample it together with its two neighbours assigning $0$ with probability $p$ to each vertex just as initially. The question we try to answer is what is the expected number of resamplings performed before reaching the all $1$ state. 
 
		
 
		We present strong evidence for a remarkable critical behaviour. We conjecture that there exists some $p_c\approx0.62$, such that for all $p\in[0,p_c)$ the expected number of resamplings is bounded by a $p$ dependent constant times $n$, whereas for all $p\in(p_c,1]$ the expected number of resamplings is exponentially growing in $n$.
 
	\end{abstract}
 
	%Let $R(n)$ denote this quantity for a length $n\geq 3$ cycle.
 
	
 
	We can think about the resampling procedure as a Markov chain. To describe the corresponding matrix we introduce some notation. For $b\in\{0,1\}^n$ let $r(b,i,(x_{-1},x_0,x_1))$ denote the bit string which differs form $b$ by replacing the bits at index $i-1$,$i$ and $i+1$ with the values in $x$, interpreting the indices $\!\!\!\!\mod n$. Also for $x\in\{0,1\}^k$ let $p(x)=p((x_1,\ldots,x_k))=\prod_{i=1}^{k}p^{(1-x_i)}(1-p)^{x_i}$. Now we can describe the matrix of the Markov chain. We use row vectors for the elements of the probability distribution indexed by bitstrings of length $n$. Let $M_{(n)}$ denote the matrix of the leaking Markov chain:
 
	$$
 
		M_{(n)}=\sum_{b\in\{0,1\}^n\setminus{\{1\}^n}}\sum_{i\in[n]:b_i=0}\sum_{x\in\{0,1\}^3}E_{(b,r(b,i,x))}\frac{p(x)}{n-|b|},
 
	$$
 
	where $E_{(i,j)}$ denotes the matrix that is all $0$ except $1$ at the $(i,j)$th entry.
 

	
 
	We want to calculate the average number of resamplings $R^{(n)}$, which we define as the expected number of resamplings divided by $n$. For this let $\rho,\mathbbm{1}\in[0,1]^{2^n}$ be indexed with elements of $\{0,1\}^n$ such that $\rho_b=p(b)$ and $\mathbbm{1}_b=1$. Then we use that the expected number of resamplings is just the hitting time of the Markov chain:
 
	\begin{align*}
 
		R^{(n)}:&=\mathbb{E}(\#\{\text{resampling before termination}\})/n\\
 
		&=\sum_{k=1}^{\infty}P(\text{at least } k \text{ resamplings are performed})/n\\
 
		&=\sum_{k=1}^{\infty}\rho M_{(n)}^k \mathbbm{1}/n\\
 
		&=\sum_{k=0}^{\infty}a^{(n)}_k p^k
 
	\end{align*}
 

	
 
	\begin{table}[]
 
	\centering
 
	\caption{Table of the coefficients $a^{(n)}_k$}
 
	\label{tab:coeffs}
 
	\resizebox{\columnwidth}{!}{%
 
		\begin{tabular}{c|ccccccccccccccccccccc}
 
			\backslashbox[10mm]{$n$}{$k$} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\		\hline
 
			3 &	0 & 1 & \cellcolor{blue!25}2 & 3+1/3 & 5.00 & 7.00 & 9.33 & 12.00 & 15.00 & 18.33 & 22.00 & 26.00 & 30.33 & 35.00 & 40.00 & 45.333 & 51.000 & 57.000 & 63.333 & 70.000 & 77.000 \\
 
			4 &	0 & 1 & 2 & \cellcolor{blue!25}3+2/3 & 6.16 & 9.66 & 14.3 & 20.33 & 27.83 & 37.00 & 48.00 & 61.00 & 76.16 & 93.66 & 113.6 & 136.33 & 161.83 & 190.33 & 222.00 & 257.00 & 295.50 \\
 
			5 &	0 & 1 & 2 & 3+2/3 & \cellcolor{blue!25}6.44 & 10.8 & 17.3 & 26.65 & 39.43 & 56.48 & 78.65 & 106.9 & 142.2 & 185.8 & 238.7 & 302.41 & 378.05 & 467.13 & 571.14 & 691.69 & 830.44 \\
 
			6 &	0 & 1 & 2 & 3+2/3 & 6.44 & \cellcolor{blue!25}11.0 & 18.5 & 30.02 & 47.10 & 71.68 & 106.0 & 152.9 & 215.4 & 297.4 & 403.1 & 537.21 & 705.25 & 913.31 & 1168.2 & 1477.4 & 1849.1 \\
 
@@ -498,227 +497,208 @@ The intuition of the following lemma is that the far right can only affect the z
 
 		Suppose we proved the statement up to $k-1$, then we proceed using induction similarly to the above
 
 		\begin{align*}
 
 		&\P^{[k]}(\Z{1}\cap \Z{k})=\\
 
 		&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!\P^{[k]}([\ell],[r,k]\in\mathcal{P})
 
 		+\P^{[k]}([k]\in\mathcal{P})\\
 
 		&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!\P^{[k]}([\ell],[r,k]\in\mathcal{P})
 
 		+\bigO{p^{k}} \tag*{$\left(\P^{[k]}([k]\in\mathcal{P})=\bigO{p^{k}}\right)$}\\	
 
 		&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!
 
 		\P^{[\ell+1]}_{b_{\ell+1}=1}([\ell]\in\mathcal{P})
 
 		\P^{[\ell+1,r-1]}(\NZ{\ell+1}\cap \NZ{r-1})
 
 		\P^{[r-1,k]}_{b_{r-1}=1}([r,k]\in\mathcal{P})
 
 		+\bigO{p^{k}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
 
 		&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!
 
 		\P^{[\ell+1]}_{b_{\ell+1}=1}([\ell]\in\mathcal{P})
 
 		\left(\P^{[\ell+1,r-1]}(\NZ{\ell+1})
 
		\P^{[\ell+1,r-1]}(\NZ{r-1})\right)
 
 		\P^{[r-1,k]}_{b_{r-1}=1}([r,k]\in\mathcal{P})
 
 		+\bigO{p^{k}} \tag{by induction}\\
 
 		&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!
 
 		\P^{[\ell+1]}_{b_{\ell+1}=1}([\ell]\in\mathcal{P})
 
 		\left(\P^{[\ell+1,k]}(\NZ{\ell+1})
 
 		\P^{[1,r-1]}_{b_{r-1}=1}(\NZ{r-1})\right)
 
 		\P^{[r-1,k]}([r,k]\in\mathcal{P})
 
 		+\bigO{p^{k}} \tag{by Corrolary~\ref{cor:probIndepNew}}\\
 
 		&=\!\!\!\sum_{\ell, r\in [k]: \ell<r-1}\!\!\!
 
 		\P^{[k]}([\ell]\in\mathcal{P})
 
 		\P^{[k]}([r,k]\in\mathcal{P})
 
 		+\bigO{p^{k}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
 
 		&=\left(\sum_{\ell\in [k]}\P^{[k]}([\ell]\in\mathcal{P})\right)
 
 		\left(\sum_{r\in [k]}\P^{[k]}([r,k]\in\mathcal{P})\right)
 
 		+\bigO{p^{k}} \tag*{$\left(\P^{[k]}([\ell]\in\mathcal{P})=\bigO{p^{\ell}}\right)$}\\	
 
 		&=\P^{[k]}(\Z{1})\P^{[k]}(\Z{k})
 
 		+\bigO{p^{k}}.	
 
 		\end{align*}
 
 	\end{proof}
 

	
 
	Again the intuition of the final theorem is simmilar to the previous lemmas. A site can only realise the length of the cycle after an interaction chain was formed around the cycle, implying that every vertex was resampled to $0$ at least once.
 
 	
 
	\begin{theorem} $R^{(n)}=\E^{[-m,m]}(\Res{0})+\bigO{p^{n}}$ for all $m\geq n \geq 3$, thus
 
		$R^{(n)}-R^{(m)}=\bigO{p^{n}}$.
 
	\end{theorem}
 
	\begin{proof} In the proof we identify the sites of the $n$-cycle with the$\mod n$ remainder classes.
 
		\vskip-3mm
 
		\begin{align*}
 
			R^{(n)}
 
			&= \E^{(n)}(\Res{0}) \tag{by translation invariance}\\
 
			&= \sum_{k=1}^{\infty}\P^{(n)}(\Res{0}\!\geq\! k) \\		
 
			&= \sum_{k=1}^{\infty}\sum_{\underset{v+w\leq n+1}{v,w\in [n]}}\P^{(n)}(\Res{0}\!\geq\! k\,\&\, \underset{P_{v,w}:=}{\underbrace{[-v\!+\!1,w\!-\!1]}}\in\mathcal{P}) \tag{partition}\\[-1mm]
 
			&= \sum_{k=1}^{\infty}\sum_{\underset{v+w\leq n}{v,w\in [n]}}\P^{(n)}(\Res{0}\!\geq\! k\,\&\, P_{v,w}\!\in\!\mathcal{P}) +\bigO{p^{n}}\\[-1mm]
 
			&= \sum_{k=1}^{\infty}\smash{\sum_{\underset{v+w\leq n}{v,w\in [n]}}}\P^{[-v,w]}_{b_{-v}=b_{w}=1}(\Res{0}\!\geq\! k\,\&\, P_{v,w}\!\in\!\mathcal{P}) \P^{[w,n-v]}(\NZ{w,n-v}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
 
			&= \sum_{k=1}^{\infty}\smash{\sum_{\underset{v+w\leq n}{v,w\in [n]}}}\P^{[-v,w]}_{b_{-v}=b_{w}=1}(\Res{0}\!\geq\! k\,\&\, P_{v,w}\!\in\!\mathcal{P})  \left(\left(\P^{[w,n-v]}(\NZ{w})\right)^{\!\!2}\!+\!\bigO{p^{n-v-w+1}}\right) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:independenetSidesNew}}\\
 
			&= \sum_{k=1}^{\infty}\smash{\sum_{\underset{v+w\leq n}{v,w\in [n]}}}\P^{[-v,w]}_{b_{-v}=b_{w}=1}(\Res{0}\!\geq\! k\,\&\, P_{v,w}\!\in\!\mathcal{P})  \left(\P^{[-m,-v]}(\NZ{-v})\P^{[w,m]}(\NZ{w})\!+\!\bigO{p^{n-v-w+1}}\right) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:independenetSidesNew}}\\	
 
			&= \sum_{k=1}^{\infty}\smash{\sum_{\underset{v+w\leq n}{v,w\in [n]}}}\P^{[-v,w]}_{b_{-v}=b_{w}=1}(\Res{0}\!\geq\! k\,\&\, P_{v,w}\!\in\!\mathcal{P}) \P^{[-m,-v]}(\NZ{-v})\P^{[w,m]}(\NZ{w}) +\bigO{p^{n}} \tag{$|P_{v,w}|=v+w-1$}\\
 
			&= \sum_{k=1}^{\infty}\sum_{\underset{v+w\leq n}{v,w\in [n]}}\P^{[-m,m]}(\Res{0}\!\geq\! k\,\&\, P_{v,w}\!\in\!\mathcal{P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\[-1mm]
 
			&= \sum_{k=1}^{\infty}\sum_{\underset{|P|<n}{P\text{ patch}:0\in P}}\P^{[-m,m]}(\Res{0}\!\geq\! k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \\[-1mm]
 
			&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:0\in P}\P^{[-m,m]}(\Res{0}\!\geq\! k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \\
 
			&= \E^{[-m,m]}(\Res{0})+\bigO{p^{n}}.\\[-3mm]										
 
		\end{align*}  
 
		\noindent Repeating the same argument with $m$ and comparing the results completes the proof.
 
	\end{proof} 	
 
\begin{comment}
 
		Let $N\geq \max(2n,2m)$, then
 
		\begin{align*}
 
		R^{(n)}
 
		&= \E^{(n)}(\Res{1}) \tag{by translation invariance}\\
 
		&= \sum_{k=1}^{\infty}\P^{(n)}(\Res{1}\geq k) \\
 
		%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r-1}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) \tag{partition}\\
 
		%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{(n)}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P})  +\bigO{p^{n}} \\	
 
		%&= \sum_{k=1}^{\infty}\sum_{\underset{\ell\geq r}{\ell,r\in[n]}}\P^{[l,r]}_{b_{\ell}=b_{r}=1}(\Res{1}\geq k\,\&\, [\ell+1,r-1]\in\mathcal{P}) \P^{[r,\ell]}(\NZ{\ell,r}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\				
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{(n)}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \tag{partition}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{(n)}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \P^{[\overline{P}]}(\NZ{\partial P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \left(\left(\P^{[|\overline{P}|]}(\NZ{1})\right)^2+\bigO{p^{|\overline{P}|}}\right) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:independenetSidesNew}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[P\cup \partial P]}_{b_{\partial P}=1}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) \left(\left(\P^{[N]}(\NZ{1})\right)^2+\bigO{p^{|\overline{P}|}}\right) +\bigO{p^{n}} \tag{by Corollary~\ref{cor:probIndepNew}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}^{|P|<n}\P^{[-N,N]}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
 
		&= \sum_{k=1}^{\infty}\sum_{P\text{ patch}:1\in P}\P^{[-N,N]}(\Res{1}\geq k\,\&\, P\in\mathcal{P}) +\bigO{p^{n}} \tag{by Lemma~\ref{lemma:eventindependenceNew}}\\
 
		&= \E^{[-N,N]}(\Res{1})+\bigO{p^{n}}.
 
		\end{align*}	
 
\end{comment}			
 

	
 
~
 

	
 
Questions:
 
\begin{itemize}
 
	\item Can we generalise the proof to other translationally invariant spaces, like the torus?
 
	\item In view of this proof, can we better characterise $a_k^{(k+1)}$?
 
	\item Why did Mario's and Tom's simulation show that for fixed $C$ the contribution coefficients have constant sign? Is it relevant for proving \ref{it:pos}-\ref{it:geq}?
 
\end{itemize} 
 

	
 
	%I think the same arguments would translate to the torus and other translationally invariant spaces, so we could go higher dimensional as Mario suggested. Then I think one would need to replace $|S_{><}|$ by the minimal number $k$ such that there is a $C$ set for which $S\cup C$ is connected. I am not entirely sure how to generalise Lemma~\ref{lemma:probIndep} though, which has key importance in the present proof.
 

	
 
\newpage
 
\section{General graphs proof}
 

	
 
We consider the following generalization of the Markov Chain.
 

	
 
Let $G=(V,E)$ be a graph with vertex set $V$ and edge set $E$. We define a Markov Chain $\mathcal{M}_G$ as the following process: initialize every vertex of $G$ independently to 0 with probability $p$ and 1 with probability $1-p$. Then at each step, select a uniformly random vertex that has value $0$ and resample it and its neighbourhood, all of them independently with the same probability $p$. The Markov Chain terminates when all vertices have value $1$. We use $\P^{G}$ to denote probabilities associated to this Markov Chain.
 
Let $G=(V,E)$ be a graph with vertex set $V$ and edge set $E$. We define a Markov Chain $\mathcal{M}_G$ as the following process: initialize every vertex of $G$ independently to 0 with probability $p$ and 1 with probability $1-p$. Then at each step, select a uniformly random vertex that has value $0$ and resample it and its neighbourhood, all of them independently with the same probability $p$. The Markov Chain terminates when all vertices have value $1$. We use $\P^{G}$ to denote probabilities associated to this Markov Chain and $\E^G$ to denote expectation values.
 

	
 
\begin{definition}[Events] \label{def:events}
 
    Let $S\subseteq V$ be any subset of vertices.
 
    Define $\Z{S}$ as the event that \emph{all} vertices in $S$ become zero at any point in time before the Markov Chain terminates.
 
    Define $\NZ{S}$ as the event that \emph{none} of the vertices in $S$ become zero at any point in time before the Markov Chain terminates.
 
    Define $\initone{S}$ as the event that all vertices in $S$ \emph{initially} get assigned the value 1, and define for any event $A$:
 
    \begin{itemize}
 
        \item Define $\Z{S}$ as the event that \emph{all} vertices in $S$ become zero at any point in time before the Markov Chain terminates.
 
        \item Define $\NZ{S}$ as the event that \emph{none} of the vertices in $S$ become zero at any point in time before the Markov Chain terminates.
 
        \item Define for any event $A$:
 
            \begin{align*}
 
        \P^{G}_S(A) &= \P^{G}(A \;\mid\; \initone{S})
 
                \P^{G}_S(A) &= \P^{G}(A \mid \text{All vertices in $S$ get initialized to }1)
 
            \end{align*}
 
        \item Boundary $\partial$ \todo{}
 
        \item $d$-Neighbourhood $B(S;d)$ \todo{}
 
    \end{itemize}
 
\end{definition}
 

	
 

	
 
$\NZ{S}$
 
$\Z{S}$
 

	
 
patch
 

	
 
$B(S;d)$
 

	
 

	
 

	
 
We consider $R^{(n)}(p)$ as a power series in $p$ and our main aim in this section is to show that $R^{(n)}(p)$ and $R^{(n+k)}(p)$ are the same up to order $n-1$.
 

	
 

	
 
%Note that we have $\P^{(n)}(\start{b}) = (1-p)^{|b|}p^{n-|b|}$ by definition of our Markov Chain.
 
\begin{definition}[Vertex visiting event] \label{def:visitingResamplingsGen}
 
    Denote by $\mathrm{Z}^{(v)}$ the event that site $v$ becomes zero at any point in time before the Markov Chain terminates. Denote the complement by $\mathrm{NZ}^{(v)}$, i.e. the event that site $v$ does \emph{not} become zero before it terminates. Furthermore define $\mathrm{NZ}^{(v,w)} := \mathrm{NZ}^{(v)} \cap \mathrm{NZ}^{(w)}$, i.e. the event that \emph{both} $v$ and $w$ do not become zero before termination.
 
\end{definition}
 
%\begin{figure}
 
%	\begin{center}
 
%    	\includegraphics{diagram_groups.pdf}
 
%    \end{center}
 
%    \caption{\label{fig:separatedgroups} Illustration of setup of Lemma \ref{lemma:eventindependenceGen}. Here $b_1,b_2\in\{0,1\}^n$ are bitstrings such that all zeroes of $b_1$ and all zeroes of $b_2$ are separated by two indices $v,w$.}
 
%\end{figure}
 
\begin{wrapfigure}[7]{r}{0.25\textwidth} % The first [] argument is number of lines that are narrowed
 
    \centering
 
    \includegraphics{diagram_groups.pdf}
 
    \caption{\label{fig:separatedgroupsGen} Lemma \ref{lemma:eventindependenceGen}.}
 
\end{wrapfigure}
 
The following lemma considers two vertices $v,w$ that are never ``crossed'' so that two halves of the cycle become independent.
 
\begin{lemma}[Conditional independence] \label{lemma:eventindependenceGen}
 
    Let $b=b_1\land b_2\in\{0,1\}^n$ be a state with two separated groups of zeroes as in Figure \ref{fig:separatedgroupsGen}. Let $v$, $w$ be any indices inbetween the groups, such that $b_1$ lies on one side of them and $b_2$ on the other, as shown in the figure. Furthermore, let $A_1$ be any event that depends only on the sites ``on the $b_1$ side of $v,w$'', and similar for $A_2$ (for example $\mathrm{Z}^{(i)}$ for an $i$ on the correct side). Then we have
 
    \begin{align*}
 
        \P^{(n)}_b(\mathrm{NZ}^{(v,w)}, A_1, A_2)
 
        &=
 
        \P^{(n)}_{b_1}(\mathrm{NZ}^{(v,w)}, A_1)
 
        \; \cdot \;
 
        \P^{(n)}_{b_2}(\mathrm{NZ}^{(v,w)}, A_2) \\
 
        \P^{(n)}_b(A_1, A_2 \mid \mathrm{NZ}^{(v,w)})
 
        &=
 
        \P^{(n)}_{b_1}(A_1 \mid \mathrm{NZ}^{(v,w)})
 
        \; \cdot \;
 
        \P^{(n)}_{b_2}(A_2 \mid \mathrm{NZ}^{(v,w)}) .%\\
 
        %R_{b,\mathrm{NZ}^{(v,w)},A_1,A_2}
 
        %&=
 
        %R_{b_1,\mathrm{NZ}^{(v,w)},A_1}
 
        %\; + \;
 
        %R_{b_2,\mathrm{NZ}^{(v,w)},A_2}
 
    \end{align*}
 
    %up to any order in $p$.
 
\end{lemma}
 

	
 
\begin{proof}
 
    From any path $\xi\in\start{b} \cap \mathrm{NZ}^{(v,w)}$ we can construct paths $\xi_1\in\start{b_1}\cap \mathrm{NZ}^{(v,w)}$ and $\xi_2\in\start{b_2}\cap\mathrm{NZ}^{(v,w)}$ as follows. Let us write the path $\xi$ as
 
    $$\xi=\left( (\text{initialize }b), (z_1, s_1, r_1), (z_2, s_2, r_2), ..., (z_{|\xi|}, s_{|\xi|}, r_{|\xi|}) \right)$$
 
    where $z_i\in[n]$ denotes the number of zeroes in the state before the $i$th step, $s_i\in [n]$ denotes the site that was resampled and $r_i\in \{0,1\}^3$ is the result of the three resampled bits. We have
 
    \begin{align*}
 
        \P^{(n)}_b[\xi] &= \P(\text{pick }s_1 | z_1) \P(r_1) \P(\text{pick }s_2 | z_2) \P(r_2) \cdots \P(\text{pick }s_{|\xi|} | z_{|\xi|}) \P(r_{|\xi|}) \\
 
                &= \frac{1}{z_1} \P(r_1) \frac{1}{z_2} \P(r_2) \cdots \frac{1}{z_{|\xi|}} \P(r_{|\xi|}) .
 
    \end{align*}
 
    To construct $\xi_1$ and $\xi_2$, start with $\xi_1 = \left( (\text{initialize }b_1) \right)$ and $\xi_2 = \left( (\text{initialize }b_2) \right)$. For each step $(z_i,s_i,r_i)$ in $\xi$ do the following: if $s_i$ is ``on the $b_1$ side of $v,w$'' then append $(z^{(1)}_i,s_i,r_i)$ to $\xi_1$ and if its ``on the $b_2$ side of $v,w$'' then append $(z^{(2)}_i,s_i,r_i)$ to $\xi_2$. Here $z^{(1)}_i$ is the number of zeroes that were on the $b_1$ side and $z^{(2)}_i$ is the number of zeroes on the $b_2$ side so we have $z_i = z^{(1)}_i + z^{(2)}_i$.
 
    %Let the resulting paths be
 
    %\begin{align*}
 
    %    \xi_1 &= \left( (z^{(1)}_{a_1}, s_{a_1}, r_{a_1}), (z^{(1)}_{a_2}, s_{a_2}, r_{a_2}), ..., (z^{(1)}_{a_{|\xi_1|}}, s_{a_{|\xi_1|}}, r_{a_{|\xi_1|}}) \right) \\
 
    %    \xi_2 &= \left( (z^{(2)}_{b_1}, s_{b_1}, r_{b_1}), (z^{(2)}_{b_2}, s_{b_2}, r_{b_2}), ..., (z^{(2)}_{b_{|\xi_1|}}, s_{b_{|\xi_1|}}, r_{b_{|\xi_1|}}) \right)
 
    %\end{align*}
 
    Now $\xi_1$ is a valid (terminating) path from $b_1$ to $\mathbf{1}$, because in the original path $\xi$, all zeroes ``on the $b_1$ side'' have been resampled by resamplings ``on the $b_1$ side''. Since the sites $v,w$ inbetween never become zero, there can not be any zero ``on the $b_1$ side'' that was resampled by a resampling ``on the $b_2$ side''.
 
    Vice versa, any two paths $\xi_1\in\start{b_1}\cap \mathrm{NZ}^{(v,w)}$ and $\xi_2\in\start{b_2}\cap\mathrm{NZ}^{(v,w)}$ also induce a path $\xi\in\start{b} \cap \mathrm{NZ}^{(v,w)}$ by simply interleaving the resampling positions. Note that $\xi_1,\xi_2$ actually induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths $\xi$ because of the possible orderings of interleaving the resamplings in $\xi_1$ and $\xi_2$.
 
    For a fixed $\xi_1,\xi_2$ we will now show the following:
 
    \begin{align*}
 
        \sum_{\substack{\xi\in\start{b} \cap \mathrm{NZ}^{(v,w)} \text{ s.t.}\\ \xi \text{ decomposes into } \xi_1,\xi_2 }} \P^{(n)}_b[\xi] &=
 
        \sum_{\text{interleavings of }\xi_1,\xi_2} \P(\text{interleaving}) \cdot \P^{(n)}_{b_1}[\xi_1] \cdot \P^{(n)}_{b_2}[\xi_2] \\
 
        &= \P^{(n)}_{b_1}[\xi_1] \cdot \P^{(n)}_{b_2}[\xi_2]
 
    \end{align*}
 
    where both sums are over $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ terms.
 
    This is best explained by an example. Lets consider the following fixed $\xi_1,\xi_2$ and an example interleaving where we choose steps from $\xi_2,\xi_1,\xi_1,\xi_2,\cdots$:
 
    \begin{align*}
 
        \xi_1 &= \left( (z_1, s_1, r_1), (z_2, s_2, r_2), (z_3, s_3, r_3), (z_4, s_4, r_4),\cdots  \right) \\
 
        \xi_2 &= \left( (z_1', s_1', r_1'), (z_2', s_2', r_2'), (z_3', s_3', r_3'), (z_4', s_4', r_4'),\cdots  \right) \\
 
        \xi   &= \left( (z_1 + z_1', s_1', r_1'), (z_1+z_2', s_1, r_1), (z_2+z_2', s_2, r_2), (z_3+z_2', s_2', r_2'), \cdots \right)
 
    \end{align*}
 
    The probability of $\xi_1$, started from $b_1$, is given by
 
    \begin{align*}
 
        \P^{(n)}_{b_1}[\xi_1] &= \P(\text{pick }s_1|z_1) \P(r_1) \P(\text{pick }s_2|z_2) \P(r_2) \cdots \P(\text{pick }s_{|\xi_1|}|z_{|\xi_1|}) \P(r_{|\xi_1|}) \\
 
                &= \frac{1}{z_1} \P(r_1) \frac{1}{z_2} \P(r_2) \cdots \frac{1}{z_{|\xi_1|}} \P(r_{|\xi_1|}) .
 
    \end{align*}
 
    and similar for $\xi_2$ but with primes.
 
    The following diagram illustrates all possible interleavings, and the red line corresponds to the particular interleaving $\xi$ in the example above.
 
    \begin{center}
 
        \includegraphics{diagram_paths2.pdf}
 
    \end{center}
 
    For the labels shown within the grid, define $p_{ij} = \frac{z_i}{z_i + z_j'}$.
 
    The probability of $\xi$ is given by
 
    \begin{align*}
 
        \P^{(n)}_b[\xi] &= \frac{1}{z_1+z_1'} \P(r_1') \frac{1}{z_1+z_2'} \P(r_1) \frac{1}{z_2+z_2'} \P(r_2) \frac{1}{z_3+z_2'} \P(r_2') \cdots \tag{by definition}\\
 
        &=
 
        \frac{z_1'}{z_1+z_1'} \frac{1}{z_1'} \P(r_1') \;
 
        \frac{z_1 }{z_1+z_2'} \frac{1}{z_1 } \P(r_1 ) \;
 
        \frac{z_2 }{z_2+z_2'} \frac{1}{z_2 } \P(r_2 ) \;
 
        \frac{z_2'}{z_3+z_2'} \frac{1}{z_2'} \P(r_2')
 
        \cdots \tag{rewrite fractions}\\
 
        &=
 
        \frac{z_1'}{z_1+z_1'} \;
 
        \frac{z_1 }{z_1+z_2'} \;
 
        \frac{z_2 }{z_2+z_2'} \;
 
        \frac{z_2'}{z_3+z_2'}
 
        \cdots
 
        \P^{(n)}_{b_1}[\xi_1] \; \P^{(n)}_{b_2}[\xi_2] \tag{definition of $\P^{(n)}_{b_i}[\xi_i]$} \\
 
        &= (1-p_{1,1}) \; p_{1,2} \; p_{2,2} \; (1-p_{3,2}) \; \P^{(n)}_{b_1}[\xi_1] \; \P^{(n)}_{b_2}[\xi_2] \tag{definition of $p_{i,j}$} \\
 
        &= \P(\text{path in grid}) \; \P^{(n)}_{b_1}[\xi_1] \; \P^{(n)}_{b_2}[\xi_2]
 
    \end{align*}
 
    In the grid we see that at every point the probabilities sum to 1, and we always reach the end, so we know the sum of all paths in the grid is 1. This proves the required equality.
 

	
 
    We obtain
 
    \begin{align*}
 
        \P^{(n)}_b(\mathrm{NZ}^{(v,w)},A_1,A_2)
 
        &= \sum_{\substack{\xi\in\start{b} \cap \\ \mathrm{NZ}^{(v,w)}\cap A_1\cap A_2}} \P^{(n)}_b(\xi) \\
 
        &= \sum_{\substack{\xi_1\in\start{b_1} \cap \\ \mathrm{NZ}^{(v,w)}\cap A_1}} \;\;
 
          \sum_{\substack{\xi_2\in\start{b_1} \cap \\ \mathrm{NZ}^{(v,w)}\cap A_2}}
 
        \P^{(n)}_{b_1}(\xi_1)\cdot\P^{(n)}_{b_2}(\xi_2) \\
0 comments (0 inline, 0 general)