Changeset - 25366b6ee86a
[Not reviewed]
0 3 0
Tom Bannink - 8 years ago 2017-05-31 16:44:52
tom.bannink@cwi.nl
Update diameter diagram
3 files changed with 9 insertions and 4 deletions:
0 comments (0 inline, 0 general)
diagram_gap.pdf
Show inline comments
 
binary diff not shown
diagram_gap.tex
Show inline comments
 
@@ -7,38 +7,43 @@
 
\usepackage[usenames,dvipsnames]{color}
 
\usepackage[hidelinks]{hyperref}
 
\renewcommand*{\familydefault}{\sfdefault}
 

	
 
\usepackage{bbm} %For \mathbbm{1}
 
%\usepackage{bbold}
 
\usepackage{tikz}
 

	
 
\begin{document}
 

	
 
\begin{tikzpicture}
 
    \draw[gray] (0,0) -- (10,0);
 
    \draw[gray,dotted] (0,2) -- (10,2);
 
    \draw[gray] (0,2) arc (90:270:1);
 
    \draw[gray] (10,0) arc (-90:90:1);
 
    \foreach \x in {0,...,10} {
 
        \draw[fill] (\x,0) circle (0.04);
 
    }
 
    \draw[fill] (11,1) circle (0.04);
 
    \draw[fill] (-1,1) circle (0.04);
 

	
 
    \foreach \x in {1,2,4,7,9} {
 
        \draw[fill,red] (\x,0) circle (0.08);
 
    }
 
    \foreach \x in {3,5,6,8} {
 
        \draw[fill,blue] (\x-0.06,0-0.06) rectangle +(0.12,0.12);
 
    }
 

	
 
    \draw[<->] (1,-0.5) -- (9,-0.5);
 
    \draw (5,-0.9) node {$\mathcal{D}(C)$};
 

	
 
    \draw[<->] (4.9,0.3) -- (6.1,0.3);
 
    \draw (5.5,0.7) node {$\mathrm{gap}(C)$};
 

	
 
    \draw[fill,red] (1,-2) circle (0.08);
 
    \draw (2,-2) node {slots $C$};
 
    \draw[fill] (5,-2) circle (0.04);
 
    \draw (6.5,-2) node {non-slots $[n]\setminus C$};
 
    %\draw[fill] (3,-2) circle (0.04);
 
    %\draw (4.5,-2) node {non-slots $[n]\setminus C$};
 
    \draw[fill,blue] (7.4-0.06,-2-0.06) rectangle +(0.12,0.12);
 
    \draw (8,-2) node {$C_{><}$};
 
\end{tikzpicture}
 

	
 
\end{document}
main.tex
Show inline comments
 
@@ -235,49 +235,49 @@ where $R_b(p)$ is the expected number of resamplings when starting from configur
 
We consider $R^{(n)}(p)$ as a power series in $p$ and show that many terms in (\ref{eq:originalsum}) cancel out if we only consider the series up to some finite order $p^k$. Note that if a path samples a $0$ then $\mathbb{P}[\xi]$ gains a factor $p$.\\
 

	
 
To see this, we split the sum in (\ref{eq:originalsum}) into parts that will later cancel out. The initial probabilities $\rho_b$ contain a factor $p$ for every $0$ and a factor $(1-p)$ for every $1$. When expanding this product of $p$s and $(1-p)$s, we see that the $1$s contribute a factor $1$ and a factor $(-p)$ and the $0$s only give a factor $p$. Therefore we no longer consider bitstrings $b\in\{0,1\}^n$ but bitstrings $b\in\{0,1,1'\}^n$. We view this as follows: every site can have one of $\{0,1,1'\}$ with `probabilities' $p$, $1$ and $-p$ respectively. A configuration $b=101'1'101'$ now has probability $\rho_{b} = 1\cdot p\cdot(-p)\cdot(-p)\cdot 1\cdot p\cdot(-p) = -p^5$ in the starting state $\rho$. It should not be hard to see that we have
 
\begin{align*}
 
    R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_{b} \; R_{\bar{b}}(p) ,
 
\end{align*}
 
where $\bar{b}$ is the bitstring obtained by changing every $1'$ in it back to a $1$. It is simply the same sum as (\ref{eq:originalsum}) but now every factor $(1-p)$ is explicitly split into $1$ and $(-p)$.
 
   
 
Some terminology: for any configuration we call a $0$ a \emph{particle} (probability $p$) and a $1'$ an \emph{antiparticle} (probability $-p$). We use the word \emph{slot} for a position that is occupied by either a paritcle or antiparticle ($0$ or $1'$). In the initial state, the probability of a configuration is given by $\pm p^{\mathrm{\#slots}}$ where the $\pm$ sign depends on the parity of the number of antiparticles.
 
    
 
We can further rewrite the sum over $b\in\{0,1,1'\}^n$ as a sum over all slot configurations $C\subseteq[n]$ and over all possible fillings of these slots.
 
\begin{align*}
 
	R^{(n)}(p) &= \frac{1}{n} \sum_{C\subseteq[n]} \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)} ,
 
\end{align*}
 
where $C(f)\in\{0,1,1'\}^n$ denotes a configuration with slots on the sites $C$ filled with (anti)particles described by $f$. The non-slot positions are filled with $1$s.
 

	
 
\begin{definition}[Diameter]
 
	For a slot configuration $C\subseteq[n]$, we define the diameter $\diam{C}$ to be the minimum size of an interval containing $C$ where the interval is also considered modulo $n$. In other words $\diam{C} = n - \max\{ j \vert \exists i : [i,i+j-1]\cap C = \emptyset \}$. Figure \ref{fig:diametergap} shows the diameter in a picture.
 
\end{definition}
 

	
 
\begin{figure}
 
	\begin{center}
 
    	\includegraphics{diagram_gap.pdf}
 
    \end{center}
 
    \caption{\label{fig:diametergap} A configuration $C=\{1,2,4,7,9\}\subseteq[n]$ consisting of 5 slots shown by the red dots. The dotted line at the top depicts the rest of the circle which may be much larger. The diameter of this configuration is $\diam{C}=9$ as shown and the largest gap of $C$ is $\mathrm{gap}(C)=2$. Note that we do not count the rest of the circle as a gap, we only consider gaps \emph{within} the diameter of $C$.}
 
    \caption{\label{fig:diametergap} A configuration $C=\{1,2,4,7,9\}\subseteq[n]$ consisting of 5 slots shown by the red dots. The blue squares denote the set $C_{><}$ which is all elements of $[n]\setminus C$ that lie within the interval spanned by $C$. The dotted line at the top depicts the rest of the circle which may be much larger. The diameter of this configuration is $\diam{C} = |C| + |C_{><}| =9$ as shown. The largest gap of $C$ is $\mathrm{gap}(C)=2$ which is the largest connected component of $C_{><}$. Note that we do not count the rest of the circle as a gap, we only consider gaps \emph{within} the diameter of $C$.}
 
\end{figure}
 

	
 
\begin{claim}[Strong cancellation claim] \label{claim:strongcancel}
 
	The lowest order term in
 
    \begin{align*}
 
        \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)} ,
 
    \end{align*}
 
	is $p^{\diam{C}}$ when $n$ is large enough. All lower order terms cancel out.
 
\end{claim}
 

	
 
Example: for $C_0=\{1,2,4,7,9\}$ (the configuration shown in Figure \ref{fig:diametergap}) we computed the quantity up to order $p^{20}$ in an infinite system:
 
\begin{align*}
 
	\sum_{f\in\{0,1'\}^{|C_0|}} \rho_{C_0(f)} R_{C_0(f)} &= 0.0240278 p^{9} + 0.235129 p^{10} + 1.24067 p^{11} + 4.71825 p^{12} \\
 
    &\quad + 14.5555 p^{13} + 38.8307 p^{14} + 93.2179 p^{15} + 206.837 p^{16}\\
 
    &\quad + 432.302 p^{17} + 862.926 p^{18} + 1662.05 p^{19} + 3112.9 p^{20} + \mathcal{O}(p^{21})
 
\end{align*}
 
and indeed the lowest order is $\diam{C}=9$.
 

	
 
~
 

	
 
A weaker version of the claim is that if $C$ contains a gap of size $k$, then the sum is zero up to and including order $p^{|C|+k-1}$.
 
\begin{claim}[Weak cancellation claim] \label{claim:weakcancel}
 
	For $C\subseteq[n]$ a configuration of slot positions, the lowest order term in
 
    \begin{align*}
 
@@ -507,49 +507,49 @@ Now observe that
 
\end{align*}
 

	
 
\newpage
 
    \subsection{Attempt to prove the linear bound \ref{it:const}}
 
    
 
Consider the chain (instead of the cycle) for simplicity with vertices identified by $\mathbb{Z}$.
 
\begin{definition}[Starting state dependent probability distribution.]
 
	Let $I\subset\mathbb{Z}$ be a finite set of vertices.
 
	Let $b_I$ be the initial state where everything is $1$, apart from the vertices corresponding to $I$, which are set $0$. For an event $A$ representing a subset of all possible resample sequences let $P_I(A)$ denote the probability of seeing a resample sequence from $A$ when the whole procedure started in state $b_I$. 
 
\end{definition}
 
\begin{definition}[Vertex visiting resamplings]\label{def:visitingResamplings}
 
	Let $V^{(i)}$ be the event corresponding to ``Vertex $i$ gets resampled to $0$ before termination''.
 
\end{definition}
 

	
 
The intuition of the following lemma is that the far right can only affect the zero vertex if there is an interaction chain forming, which means that every vertex should get resampled to $0$ at least once.
 
\begin{lemma}\label{lemma:probIndep}
 
	Suppose we have a finite set $I\subset\mathbb{N}_+$ of vertices.
 
	Let $I_{\max}:=\max(I)$ and $I':=I\setminus\{I_{\max}\}$, and similarly let $I_{\min}:=\min(I)$.
 
	Then $P_{I}(V^{(0)})=P_{I'}(V^{(0)}) + O(p^{I_{\max}+1-|I|})$.
 
\end{lemma}
 
\begin{proof}
 
	The proof uses induction on $|I|$. For $|I|=1$ the statement is easy, since every resample sequence that resamples the $0$ vertex must produce at least $I_{\max}$ number of $0$-s during the resamplings.
 
	
 
	Induction step: For an event $A$ and $k>0$ let us denote by $A_k=A\cap$``Each vertex in $0,1,2,\ldots, k-1$ gets $0$ before termination (either by resampling or initialisation), but not $k$''. Observe that $V^{(0)}=\dot{\bigcup}_{k=1}^{\infty}V^{(0)}_k$.
 
	Let $I_{<k}:=I\cap[k-1]$ and similarly $I_{>k}:=I\setminus[k]$, finally let $I_{><}:=\{I_{\min}+1,I_{\max}-1]\}\setminus I$. Suppose we proved the claim up to $|I|-1$, then the induction step can be shown by
 
    Let $I_{<k}:=I\cap[k-1]$ and similarly $I_{>k}:=I\setminus[k]$, finally let $I_{><}:=\{I_{\min}+1,I_{\max}-1]\}\setminus I$ as shown in Figure \ref{fig:diametergap}. Suppose we proved the claim up to $|I|-1$, then the induction step can be shown by
 
	\begin{align*}
 
		P_{I}(V^{(0)})
 
		&=\sum_{k=1}^{\infty}P(V^{(0)}_k)
 
		=\sum_{k\in \mathbb{N}\setminus I}P(V^{(0)}_k)\\
 
		&=\sum_{k\in\mathbb{N}\setminus I}P_{I_{<k}}(V^{(0)}_k)\cdot P_{I_{>k}}(\overline{V^{(k)}}) \tag{by Claim~\ref{claim:eventindependence}}\\
 
		&=\sum_{k\in I_{><}}P_{I_{<k}}(V^{(0)}_k)\cdot P_{I_{>k}}(\overline{V^{(k)}})+\mathcal{O}(p^{I_{\max}+1-|I|})
 
		\tag{$k<I_{\min}\Rightarrow P_{I_{<k}}(V^{(0)}_k)=0$}\\
 
		&=\sum_{k\in I_{><}}P_{I'_{<k}}(V^{(0)}_k)\cdot P_{I_{>k}}(\overline{V^{(k)}})+\mathcal{O}(p^{I_{\max}+1-|I|})	
 
		\tag{$k< I_{\max}\Rightarrow I_{<k}=I'_{<k}$}\\
 
		&=\sum_{k\in I_{><}}P_{I'_{<k}}(V^{(0)}_k)\cdot
 
		\left(P_{I'_{>k}}(\overline{V^{(k)}})+\mathcal{O}(p^{I_{\max}-k+1-|I_{>k}|})\right) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{by induction, since for $k>I_{\min}$ we have $|I_{<k}|<|I|$}\\
 
		&=\sum_{k\in I_{><}}P_{I'_{<k}}(V^{(0)}_k)\cdot
 
		P_{I'_{>k}}(\overline{V^{(k)}}) +\mathcal{O}(p^{I_{\max}+1-|I|})	
 
		\tag{as $P_{I'_{<k}}(V^{(0)}_k)=\mathcal{O}(p^{k-|I'_{<k}|})$}\\
 
		&=\sum_{k\in\mathbb{N}\setminus I}P_{I'_{<k}}(V^{(0)}_k)\cdot
 
		P_{I'_{>k}}(\overline{V^{(k)}}) +\mathcal{O}(p^{I_{\max}+1-|I|})\\
 
		&=\sum_{k\in\mathbb{N}\setminus I'}P_{I'_{<k}}(V^{(0)}_k)\cdot
 
		P_{I'_{>k}}(\overline{V^{(k)}}) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{$k=I_{\max}\Rightarrow P_{I'_{<k}}(V^{(0)}_k)=\mathcal{O}(p^{I_{\max}-|I'|})=\mathcal{O}(p^{I_{\max}+1-|I|})$}\\
 
		&=P_{I'}(V^{(0)}) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{analogously to the beginning}			
 
	\end{align*}
 
\end{proof}
 

	
 
	The main insight that Lemma~\ref{lemma:probIndep} gives is that if we separate the slots to two halves, in order to see the cancellation of the contribution of the expected resamples on the right, we can simply pair up the left configurations by the particle filling the leftmost slot. And similarly for cancelling the left expectations we pair up right configurations based on the rightmost filling. 
 
	
0 comments (0 inline, 0 general)