Changeset - 25366b6ee86a
[Not reviewed]
0 3 0
Tom Bannink - 8 years ago 2017-05-31 16:44:52
tom.bannink@cwi.nl
Update diameter diagram
3 files changed with 9 insertions and 4 deletions:
0 comments (0 inline, 0 general)
diagram_gap.pdf
Show inline comments
 
binary diff not shown
diagram_gap.tex
Show inline comments
 
\documentclass{standalone}
 
\usepackage[T1]{fontenc}
 
\usepackage{amsmath}
 
\usepackage{amsfonts}
 
\usepackage{parskip}
 
\usepackage{marvosym} %Lightning symbol
 
\usepackage[usenames,dvipsnames]{color}
 
\usepackage[hidelinks]{hyperref}
 
\renewcommand*{\familydefault}{\sfdefault}
 

	
 
\usepackage{bbm} %For \mathbbm{1}
 
%\usepackage{bbold}
 
\usepackage{tikz}
 

	
 
\begin{document}
 

	
 
\begin{tikzpicture}
 
    \draw[gray] (0,0) -- (10,0);
 
    \draw[gray,dotted] (0,2) -- (10,2);
 
    \draw[gray] (0,2) arc (90:270:1);
 
    \draw[gray] (10,0) arc (-90:90:1);
 
    \foreach \x in {0,...,10} {
 
        \draw[fill] (\x,0) circle (0.04);
 
    }
 
    \draw[fill] (11,1) circle (0.04);
 
    \draw[fill] (-1,1) circle (0.04);
 

	
 
    \foreach \x in {1,2,4,7,9} {
 
        \draw[fill,red] (\x,0) circle (0.08);
 
    }
 
    \foreach \x in {3,5,6,8} {
 
        \draw[fill,blue] (\x-0.06,0-0.06) rectangle +(0.12,0.12);
 
    }
 

	
 
    \draw[<->] (1,-0.5) -- (9,-0.5);
 
    \draw (5,-0.9) node {$\mathcal{D}(C)$};
 

	
 
    \draw[<->] (4.9,0.3) -- (6.1,0.3);
 
    \draw (5.5,0.7) node {$\mathrm{gap}(C)$};
 

	
 
    \draw[fill,red] (1,-2) circle (0.08);
 
    \draw (2,-2) node {slots $C$};
 
    \draw[fill] (5,-2) circle (0.04);
 
    \draw (6.5,-2) node {non-slots $[n]\setminus C$};
 
    %\draw[fill] (3,-2) circle (0.04);
 
    %\draw (4.5,-2) node {non-slots $[n]\setminus C$};
 
    \draw[fill,blue] (7.4-0.06,-2-0.06) rectangle +(0.12,0.12);
 
    \draw (8,-2) node {$C_{><}$};
 
\end{tikzpicture}
 

	
 
\end{document}
main.tex
Show inline comments
 
@@ -211,97 +211,97 @@
 
    where the last inequality holds for $\epsilon\leq\sqrt{p_c}(\sqrt{p}-\sqrt{p_c})$.
 
    
 
    \section{Calculating the coefficients $a_k^{(n)}$}
 
    Let $\rho'\in\mathbb{R}[p]^{2^n}$ be a vector of polynomials, and let $\text{rank}(\rho')$ be defined in the following way: 
 
    $$\text{rank}(\rho'):=\min_{b\in\{0,1\}^n}\left( |b|+ \text{maximal } k\in\mathbb{N} \text{ such that } p^k \text{ divides } \rho'_b\right).$$
 
	Clearly for any $\rho'$ we have that $\text{rank}(\rho' M_{(n)})\geq \text{rank}(\rho') + 1$. Another observation is, that all elements of $\rho'$ are divisible by $p^{\text{rank}(\rho')-n}$.
 
    We observe that for the initial $\rho$ we have that $\text{rank}(\rho)=n$, therefore $\text{rank}(\rho*(M_{(n)}^k))\geq n+k$, and so $\rho*(M_{(n)}^k)*\mathbbm{1}$ is obviously divisible by $p^{k}$. This implies that $a_k^{(n)}$ can be calculated by only looking at $\rho*(M_{(n)}^1)*\mathbbm{1}, \ldots, \rho*(M_{(n)}^k)*\mathbbm{1}$.
 
    
 
\newpage
 
\section{Quasiprobability method}
 
Let us first introduce notation for paths of the Markov Chain
 
\begin{definition}[Paths]
 
    We define a \emph{path} of the Markov Chain as a sequence of states and resampling choices $\xi=((b_0,r_0),(b_1,r_1),...,(b_k,r_k)) \in (\{0,1\}^n\times[n])^k$ indicating that at time $t$ Markov Chain was in state $b_t\in\{0,1\}^n$ and then resampled site $r_t$. We denote by $|\xi|$ the length of such a path, i.e. the number of resamples that happened, and by $\mathbb{P}[\xi]$ the probability associated to this path.
 
    We denote by $\paths{b}$ the set of all valid paths $\xi$ that start in state $b$ and end in state $\mathbf{1}$.
 
\end{definition}
 
We can write the expected number of resamplings per site $R^{(n)}(p)$ as
 
\begin{align}
 
    R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1\}^{n}} \rho_b \; R_b(p) \label{eq:originalsum}
 
\end{align}
 
where $R_b(p)$ is the expected number of resamplings when starting from configuration $b$
 
\begin{align*}
 
	R_b(p) &= \sum_{\xi \in \paths{b}} \mathbb{P}[\xi] \cdot |\xi|
 
\end{align*}
 

	
 
We consider $R^{(n)}(p)$ as a power series in $p$ and show that many terms in (\ref{eq:originalsum}) cancel out if we only consider the series up to some finite order $p^k$. Note that if a path samples a $0$ then $\mathbb{P}[\xi]$ gains a factor $p$.\\
 

	
 
To see this, we split the sum in (\ref{eq:originalsum}) into parts that will later cancel out. The initial probabilities $\rho_b$ contain a factor $p$ for every $0$ and a factor $(1-p)$ for every $1$. When expanding this product of $p$s and $(1-p)$s, we see that the $1$s contribute a factor $1$ and a factor $(-p)$ and the $0$s only give a factor $p$. Therefore we no longer consider bitstrings $b\in\{0,1\}^n$ but bitstrings $b\in\{0,1,1'\}^n$. We view this as follows: every site can have one of $\{0,1,1'\}$ with `probabilities' $p$, $1$ and $-p$ respectively. A configuration $b=101'1'101'$ now has probability $\rho_{b} = 1\cdot p\cdot(-p)\cdot(-p)\cdot 1\cdot p\cdot(-p) = -p^5$ in the starting state $\rho$. It should not be hard to see that we have
 
\begin{align*}
 
    R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_{b} \; R_{\bar{b}}(p) ,
 
\end{align*}
 
where $\bar{b}$ is the bitstring obtained by changing every $1'$ in it back to a $1$. It is simply the same sum as (\ref{eq:originalsum}) but now every factor $(1-p)$ is explicitly split into $1$ and $(-p)$.
 
   
 
Some terminology: for any configuration we call a $0$ a \emph{particle} (probability $p$) and a $1'$ an \emph{antiparticle} (probability $-p$). We use the word \emph{slot} for a position that is occupied by either a paritcle or antiparticle ($0$ or $1'$). In the initial state, the probability of a configuration is given by $\pm p^{\mathrm{\#slots}}$ where the $\pm$ sign depends on the parity of the number of antiparticles.
 
    
 
We can further rewrite the sum over $b\in\{0,1,1'\}^n$ as a sum over all slot configurations $C\subseteq[n]$ and over all possible fillings of these slots.
 
\begin{align*}
 
	R^{(n)}(p) &= \frac{1}{n} \sum_{C\subseteq[n]} \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)} ,
 
\end{align*}
 
where $C(f)\in\{0,1,1'\}^n$ denotes a configuration with slots on the sites $C$ filled with (anti)particles described by $f$. The non-slot positions are filled with $1$s.
 

	
 
\begin{definition}[Diameter]
 
	For a slot configuration $C\subseteq[n]$, we define the diameter $\diam{C}$ to be the minimum size of an interval containing $C$ where the interval is also considered modulo $n$. In other words $\diam{C} = n - \max\{ j \vert \exists i : [i,i+j-1]\cap C = \emptyset \}$. Figure \ref{fig:diametergap} shows the diameter in a picture.
 
\end{definition}
 

	
 
\begin{figure}
 
	\begin{center}
 
    	\includegraphics{diagram_gap.pdf}
 
    \end{center}
 
    \caption{\label{fig:diametergap} A configuration $C=\{1,2,4,7,9\}\subseteq[n]$ consisting of 5 slots shown by the red dots. The dotted line at the top depicts the rest of the circle which may be much larger. The diameter of this configuration is $\diam{C}=9$ as shown and the largest gap of $C$ is $\mathrm{gap}(C)=2$. Note that we do not count the rest of the circle as a gap, we only consider gaps \emph{within} the diameter of $C$.}
 
    \caption{\label{fig:diametergap} A configuration $C=\{1,2,4,7,9\}\subseteq[n]$ consisting of 5 slots shown by the red dots. The blue squares denote the set $C_{><}$ which is all elements of $[n]\setminus C$ that lie within the interval spanned by $C$. The dotted line at the top depicts the rest of the circle which may be much larger. The diameter of this configuration is $\diam{C} = |C| + |C_{><}| =9$ as shown. The largest gap of $C$ is $\mathrm{gap}(C)=2$ which is the largest connected component of $C_{><}$. Note that we do not count the rest of the circle as a gap, we only consider gaps \emph{within} the diameter of $C$.}
 
\end{figure}
 

	
 
\begin{claim}[Strong cancellation claim] \label{claim:strongcancel}
 
	The lowest order term in
 
    \begin{align*}
 
        \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)} ,
 
    \end{align*}
 
	is $p^{\diam{C}}$ when $n$ is large enough. All lower order terms cancel out.
 
\end{claim}
 

	
 
Example: for $C_0=\{1,2,4,7,9\}$ (the configuration shown in Figure \ref{fig:diametergap}) we computed the quantity up to order $p^{20}$ in an infinite system:
 
\begin{align*}
 
	\sum_{f\in\{0,1'\}^{|C_0|}} \rho_{C_0(f)} R_{C_0(f)} &= 0.0240278 p^{9} + 0.235129 p^{10} + 1.24067 p^{11} + 4.71825 p^{12} \\
 
    &\quad + 14.5555 p^{13} + 38.8307 p^{14} + 93.2179 p^{15} + 206.837 p^{16}\\
 
    &\quad + 432.302 p^{17} + 862.926 p^{18} + 1662.05 p^{19} + 3112.9 p^{20} + \mathcal{O}(p^{21})
 
\end{align*}
 
and indeed the lowest order is $\diam{C}=9$.
 

	
 
~
 

	
 
A weaker version of the claim is that if $C$ contains a gap of size $k$, then the sum is zero up to and including order $p^{|C|+k-1}$.
 
\begin{claim}[Weak cancellation claim] \label{claim:weakcancel}
 
	For $C\subseteq[n]$ a configuration of slot positions, the lowest order term in
 
    \begin{align*}
 
        \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)} ,
 
    \end{align*}
 
	is at least $p^{|C|+\mathrm{gap}(C)}$ when $n$ is large enough. Here $\mathrm{gap}(C)$ is defined as in Figure \ref{fig:diametergap}, its the size of the largest gap of $C$ within the diameter of $C$. All lower order terms cancel out.
 
\end{claim}
 
This weaker version would imply \ref{it:const} but for $\mathcal{O}(k^2)$ as opposed to $k+1$.
 

	
 
\newpage
 
The reason that claim \ref{claim:strongcancel} would prove \ref{it:const} is the following:
 
For a starting configuration that \emph{does} give a nonzero contribution, you can take that same starting configuration and translate it to get $n$ other configurations that give the same contribution. Therefore the coefficient in the expected number of resamplings is a multiple of $n$ which Andr\'as already divided out in the definition of $R^{(n)}(p)$. To show \ref{it:const} we argue that this is the \emph{only} dependency on $n$. This is because there are only finitely many (depending on $k$ but not on $n$) configurations where the $k$ slots are nearby regardless of the value of $n$. So there are only finitely many nonzero contributions after translation symmetry was taken out. For example, when considering all starting configurations with 5 slots one might think there are $\binom{n}{5}$ configurations to consider which would be a dependency on $n$ (more than only the translation symmetry). But since most of these configurations have a diameter larger than $k$, they do not contribute to $a_k$. Only finitely many do and that does not depend on $n$.
 

	
 
~
 

	
 
Section \ref{sec:computerb} shows how to compute $R_b$ (this is not relevant for showing the claim) and the section after that shows how to prove the weaker claim.
 

	
 
\newpage
 
\subsection{Computation of $R_b$} \label{sec:computerb}
 

	
 
By $R_{101}$ we denote $R_b(p)$ for a $b$ that consists of only $1$s except for a single zero. We compute $R_{101}$ up to second order in $p$. This requires the following transitions.
 
\begin{align*}
 
    \framebox{$1 0 1$} &\to \framebox{$1 1 1$} & (1-p)^3 = 1-3p+3p^2-p^3\\
 
    \hline
 
    \framebox{$1 0 1$} &\to
 
        \begin{cases}
 
            \framebox{$0 1 1$}\\
 
@@ -483,97 +483,97 @@ Following the proof of claim \ref{claim:eventindependence} we also have
 
    &=
 
    R_{b_1,\mathrm{PZ}_{j}}
 
    \; + \;
 
    R_{b_2,\mathrm{NZ}_{j}}
 
\end{align*}
 

	
 

	
 
Now observe that
 
\begin{align*}
 
    R_b &= \sum_{j=1}^k \mathbb{P}_b(\mathrm{PZ}_j) R_{b,\mathrm{PZ}_j} + \mathbb{P}_b(\mathrm{AZ}) R_{b,\mathrm{AZ}} \\
 
        &= \sum_{j=1}^k \mathbb{P}_{b_2}(\mathrm{NZ}_j)\mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
 
        + \mathcal{O}(p^k) \\
 
        &= \sum_{j=1}^k \mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        - \sum_{j=1}^k \mathbb{P}_{b_2}(\mathrm{Z}_j)\mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
 
        + \mathcal{O}(p^k) \\
 
        &= \sum_{j=1}^k \mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
 
        + \mathcal{O}(p^k) \\
 
        &= R_{b_1}
 
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
 
        + \mathcal{O}(p^k) \\
 
        &\overset{???}{=} R_{b_1} + R_{b_2} + \mathcal{O}(p^k)
 
\end{align*}
 

	
 
\newpage
 
    \subsection{Attempt to prove the linear bound \ref{it:const}}
 
    
 
Consider the chain (instead of the cycle) for simplicity with vertices identified by $\mathbb{Z}$.
 
\begin{definition}[Starting state dependent probability distribution.]
 
	Let $I\subset\mathbb{Z}$ be a finite set of vertices.
 
	Let $b_I$ be the initial state where everything is $1$, apart from the vertices corresponding to $I$, which are set $0$. For an event $A$ representing a subset of all possible resample sequences let $P_I(A)$ denote the probability of seeing a resample sequence from $A$ when the whole procedure started in state $b_I$. 
 
\end{definition}
 
\begin{definition}[Vertex visiting resamplings]\label{def:visitingResamplings}
 
	Let $V^{(i)}$ be the event corresponding to ``Vertex $i$ gets resampled to $0$ before termination''.
 
\end{definition}
 

	
 
The intuition of the following lemma is that the far right can only affect the zero vertex if there is an interaction chain forming, which means that every vertex should get resampled to $0$ at least once.
 
\begin{lemma}\label{lemma:probIndep}
 
	Suppose we have a finite set $I\subset\mathbb{N}_+$ of vertices.
 
	Let $I_{\max}:=\max(I)$ and $I':=I\setminus\{I_{\max}\}$, and similarly let $I_{\min}:=\min(I)$.
 
	Then $P_{I}(V^{(0)})=P_{I'}(V^{(0)}) + O(p^{I_{\max}+1-|I|})$.
 
\end{lemma}
 
\begin{proof}
 
	The proof uses induction on $|I|$. For $|I|=1$ the statement is easy, since every resample sequence that resamples the $0$ vertex must produce at least $I_{\max}$ number of $0$-s during the resamplings.
 
	
 
	Induction step: For an event $A$ and $k>0$ let us denote by $A_k=A\cap$``Each vertex in $0,1,2,\ldots, k-1$ gets $0$ before termination (either by resampling or initialisation), but not $k$''. Observe that $V^{(0)}=\dot{\bigcup}_{k=1}^{\infty}V^{(0)}_k$.
 
	Let $I_{<k}:=I\cap[k-1]$ and similarly $I_{>k}:=I\setminus[k]$, finally let $I_{><}:=\{I_{\min}+1,I_{\max}-1]\}\setminus I$. Suppose we proved the claim up to $|I|-1$, then the induction step can be shown by
 
    Let $I_{<k}:=I\cap[k-1]$ and similarly $I_{>k}:=I\setminus[k]$, finally let $I_{><}:=\{I_{\min}+1,I_{\max}-1]\}\setminus I$ as shown in Figure \ref{fig:diametergap}. Suppose we proved the claim up to $|I|-1$, then the induction step can be shown by
 
	\begin{align*}
 
		P_{I}(V^{(0)})
 
		&=\sum_{k=1}^{\infty}P(V^{(0)}_k)
 
		=\sum_{k\in \mathbb{N}\setminus I}P(V^{(0)}_k)\\
 
		&=\sum_{k\in\mathbb{N}\setminus I}P_{I_{<k}}(V^{(0)}_k)\cdot P_{I_{>k}}(\overline{V^{(k)}}) \tag{by Claim~\ref{claim:eventindependence}}\\
 
		&=\sum_{k\in I_{><}}P_{I_{<k}}(V^{(0)}_k)\cdot P_{I_{>k}}(\overline{V^{(k)}})+\mathcal{O}(p^{I_{\max}+1-|I|})
 
		\tag{$k<I_{\min}\Rightarrow P_{I_{<k}}(V^{(0)}_k)=0$}\\
 
		&=\sum_{k\in I_{><}}P_{I'_{<k}}(V^{(0)}_k)\cdot P_{I_{>k}}(\overline{V^{(k)}})+\mathcal{O}(p^{I_{\max}+1-|I|})	
 
		\tag{$k< I_{\max}\Rightarrow I_{<k}=I'_{<k}$}\\
 
		&=\sum_{k\in I_{><}}P_{I'_{<k}}(V^{(0)}_k)\cdot
 
		\left(P_{I'_{>k}}(\overline{V^{(k)}})+\mathcal{O}(p^{I_{\max}-k+1-|I_{>k}|})\right) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{by induction, since for $k>I_{\min}$ we have $|I_{<k}|<|I|$}\\
 
		&=\sum_{k\in I_{><}}P_{I'_{<k}}(V^{(0)}_k)\cdot
 
		P_{I'_{>k}}(\overline{V^{(k)}}) +\mathcal{O}(p^{I_{\max}+1-|I|})	
 
		\tag{as $P_{I'_{<k}}(V^{(0)}_k)=\mathcal{O}(p^{k-|I'_{<k}|})$}\\
 
		&=\sum_{k\in\mathbb{N}\setminus I}P_{I'_{<k}}(V^{(0)}_k)\cdot
 
		P_{I'_{>k}}(\overline{V^{(k)}}) +\mathcal{O}(p^{I_{\max}+1-|I|})\\
 
		&=\sum_{k\in\mathbb{N}\setminus I'}P_{I'_{<k}}(V^{(0)}_k)\cdot
 
		P_{I'_{>k}}(\overline{V^{(k)}}) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{$k=I_{\max}\Rightarrow P_{I'_{<k}}(V^{(0)}_k)=\mathcal{O}(p^{I_{\max}-|I'|})=\mathcal{O}(p^{I_{\max}+1-|I|})$}\\
 
		&=P_{I'}(V^{(0)}) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{analogously to the beginning}			
 
	\end{align*}
 
\end{proof}
 

	
 
	The main insight that Lemma~\ref{lemma:probIndep} gives is that if we separate the slots to two halves, in order to see the cancellation of the contribution of the expected resamples on the right, we can simply pair up the left configurations by the particle filling the leftmost slot. And similarly for cancelling the left expectations we pair up right configurations based on the rightmost filling. 
 
	
 
	Also this claim finally ``sees'' how many empty places are between slots. These properties make it possible to use this lemma to prove the sought linear bound. We show it for the infinite chain, but with a little care it should also translate to the circle.
 

	
 
\begin{definition}[Connected patches]
 
	Let $\mathcal{P}\subset 2^{\mathbb{Z}}$ be a finite system of finite subsets of $\mathbb{Z}$. We say that the patch set of a resample sequence is $\mathcal{P}$,
 
	if the connected components of the vertices that have ever become $0$ are exactly the elements of $\mathcal{P}$. We denote by $A^{(\mathcal{P})}$ the event that the set of patches is $\mathcal{P}$. For a patch $P$ let $A^{(P)}=\bigcup_{\mathcal{P}:P\in \mathcal{P}}A^{(\mathcal{P})}$.
 
\end{definition} 
 
Note by Tom: So $A^{(\mathcal{P})}$ is the event that the set of all patches is \emph{exactly} $\mathcal{P}$ whereas $A^{(P)}$ is the event that one of the patches is equal to $P$ but there can be other patches as well.
 

	
 
\begin{definition}[Conditional expectations]
 
	Let $S\subset\mathbb{Z}$ be a finite slot configuration, and for $f\in\{0,1'\}^{|S|}$ let $I:=S(f)$ be the set of vertices filled with particles. 
 
	Then we define
 
	$$R_I:=\mathbb{E}[\#\{\text{resamplings when started from inital state }I\}].$$
 
	For a patch set $\mathcal{P}$ and some $P\in\mathcal{P}$ we define
 
	$$R^{(\mathcal{P})}_I:=\mathbb{E}[\#\{\text{resamplings when started from inital state }I\}|A^{(\mathcal{P})}]$$	
 
	and 
 
	$$R^{(P,\mathcal{P})}_I:=\mathbb{E}[\#\{\text{resamplings inside }P\text{ when started from inital state }I\}|A^{(\mathcal{P})}]$$		
 
	finally
 
	$$R^{(P)}_I:=\mathbb{E}[\#\{\text{resamplings inside }P\text{ when started from inital state }I\}|A^{(P)}].$$	
 
\end{definition} 
 

	
 
    Similarly to Mario's proof I use the observation that 
 
    \begin{align*}
 
    R^{(n)} &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_{\bar{b}}(p)\\
 
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\rho_{S(f)} R_{S(f)}\\
0 comments (0 inline, 0 general)