Changeset - 280d2941c33b
[Not reviewed]
0 1 0
Tom Bannink - 8 years ago 2017-07-03 22:47:57
tombannink@gmail.com
Add conditional independence equation
1 file changed with 14 insertions and 8 deletions:
main.tex
14
8
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -434,60 +434,66 @@ It is useful to introduce some new notation:
 
    	\includegraphics{diagram_groups.pdf}
 
    \end{center}
 
    \caption{\label{fig:separatedgroups} Illustration of setup of Lemma \ref{lemma:eventindependence}. Here $b_1,b_2\in\{0,1\}^n$ are bitstrings such that all zeroes of $b_1$ and all zeroes of $b_2$ are separated by two indices $j_1,j_2$.}
 
\end{figure}
 
\begin{lemma}[Conditional independence] \label{lemma:eventindependence} \label{claim:eventindependence}
 
    Let $b=b_1\land b_2\in\{0,1\}^n$ be a state with two groups ($b_1\lor b_2 = 1^n$) of zeroes that are separated by at least one site inbetween, as in Figure \ref{fig:separatedgroups}. Let $j_1$, $j_2$ be any indices inbetween the groups, such that $b_1$ lies on one side of them and $b_2$ on the other, as shown in the figure. Furthermore, let $A_1$ be any event that depends only on the sites ``on the $b_1$ side of $j_1,j_2$'', and similar for $A_2$ (for example $\mathrm{Z}^{(i)}$ for an $i$ on the correct side). Then we have
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}^{(j_1,j_2)}, A_1, A_2)
 
        &=
 
        \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)}, A_1)
 
        \; \cdot \;
 
        \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)}, A_2) \\
 
        \mathbb{P}_b(A_1, A_2 \mid \mathrm{NZ}^{(j_1,j_2)})
 
        &=
 
        \mathbb{P}_{b_1}(A_1 \mid \mathrm{NZ}^{(j_1,j_2)})
 
        \; \cdot \;
 
        \mathbb{P}_{b_2}(A_2 \mid \mathrm{NZ}^{(j_1,j_2)}) \\
 
        R_{b,\mathrm{NZ}^{(j_1,j_2)},A_1,A_2}
 
        &=
 
        R_{b_1,\mathrm{NZ}^{(j_1,j_2)},A_1}
 
        \; + \;
 
        R_{b_2,\mathrm{NZ}^{(j_1,j_2)},A_2}
 
    \end{align*}
 
    up to any order in $p$.
 
\end{lemma}
 
The lemma says that conditioned on $j_1$ and $j_2$ not being crossed, the two halves of the circle are independent. 
 

	
 
\begin{proof}
 
    Note that any path $\xi\in\paths{b} \cap \mathrm{NZ}^{(j_1,j_2)}$ can be split into paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}^{(j_1,j_2)}$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}^{(j_1,j_2)}$. This can be done by taking all resampling positions $r_i$ in $\xi$ and if $r_i$ is ``on the $b_1$ side of $j_1,j_2$'' then add it to $\xi_1$ and if its ``on the $b_2$ side of $j_1,j_2$'' then add it to $\xi_2$. Note that now $\xi_1$ is a path from $b_1$ to $\mathbf{1}$, because in the original path $\xi$, all zeroes ``on the $b_1$ side'' have been resampled by resamplings ``on the $b_1$ side''. Since the sites $j_1,j_2$ inbetween never become zero, there can not be any zero ``on the $b_1$ side'' that was resampled by a resampling ``on the $b_2$ side''.  Vice versa, all paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}^{(j_1,j_2)}$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}^{(j_1,j_2)}$ also induce a path $\xi\in\paths{b} \cap \mathrm{NZ}^{(j_1,j_2)}$ by simply concatenating the resampling positions. Note that $\xi_1,\xi_2$ actually induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths $\xi$ because of the possible orderings of concatenating the resamplings in $\xi_1$ and $\xi_2$. However, all these paths have smaller weight, and by the same reasoning as in the proof of claim \ref{claim:expectationsum} these weights sum to exactly $1$, so we obtain
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}^{(j_1,j_2)},A_1,A_2)
 
        &= \sum_{\substack{\xi\in\paths{b} \cap \\ \mathrm{NZ}^{(j_1,j_2)}\cap A_1\cap A_2}} \mathbb{P}[\xi] \\
 
        &= \sum_{\substack{\xi_1\in\paths{b_1} \cap \\ \mathrm{NZ}^{(j_1,j_2)}\cap A_1}} \;\;
 
          \sum_{\substack{\xi_2\in\paths{b_1} \cap \\ \mathrm{NZ}^{(j_1,j_2)}\cap A_2}}
 
        \mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2] \\
 
        &=
 
        \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)},A_1)
 
        \; \cdot \;
 
        \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)},A_2).
 
    \end{align*}
 
    For the second equality, note that again by the same reasoning as in the proof of claim \ref{claim:expectationsum} we have
 
    The second equality follows directly from Bayes rule and removing $A_1,A_2$.
 
    For the third equality, note that again by the same reasoning as in the proof of claim \ref{claim:expectationsum} we have
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}^{(j_1,j_2)},A_1,A_2) R_{b,\mathrm{NZ}^{(j_1,j_2)},A_1,A_2}
 
        &:= \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}^{(j_1,j_2)}\cap A_1\cap A_2}} \mathbb{P}[\xi] |\xi| \\
 
        &= \sum_{\substack{\xi_1\in\paths{b_1}\\\xi_1 \in \mathrm{NZ}^{(j_1,j_2)}\cap A_1}}
 
          \sum_{\substack{\xi_2\in\paths{b_2}\\\xi_2 \in \mathrm{NZ}^{(j_1,j_2)}\cap A_2}}
 
        \mathbb{P}[\xi_1]\mathbb{P}[\xi_2] (|\xi_1| + |\xi_2|) \\
 
        &=
 
        \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)},A_2) \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)},A_1) R_{b_1,\mathrm{NZ}^{(j_1,j_2)},A_1} \\
 
        &\quad +
 
        \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)},A_1) \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)},A_2) R_{b_2,\mathrm{NZ}^{(j_1,j_2)},A_2} .
 
    \end{align*}
 
    Dividing by $\mathbb{P}_b(\mathrm{NZ}_{j_1}\cap\mathrm{NZ}_{j_2},A_1,A_2)$ and using the first equality gives the desired result.
 
    Dividing by $\mathbb{P}_b(\mathrm{NZ}_{(j_1,j_2)},A_1,A_2)$ and using the first equality gives the desired result.
 
\end{proof}
 

	
 
\begin{comment}
 
TEST: Although a proof of claim \ref{claim:expectationsum} was already given, I'm trying to prove it in an alternate way using claim \ref{claim:eventindependence}.
 

	
 
~
 

	
 
Assume that $b_1$ ranges up to site $0$, the gap ranges from sites $1,...,k$ and $b_2$ ranges from site $k+1$ and onwards. For $j=1,...,k$ define the ``partial-zeros'' event $\mathrm{PZ}_j = \mathrm{Z}_1 \cap \mathrm{Z}_2 \cap ... \cap \mathrm{Z}_{j-1} \cap \mathrm{NZ}_j$ i.e. the first $j-1$ sites of the gap become zero and site $j$ does not become zero. Also define the ``all-zeros'' event $\mathrm{AZ} = \mathrm{Z}_1 \cap ... \cap \mathrm{Z}_k$, where all sites of the gap become zero. Note that these events partition the space, so we have for all $b$ that $\sum_{j=1}^k \mathbb{P}_b(\mathrm{PZ}_j) = 1 - \mathbb{P}_b(\mathrm{AZ}) = 1 - \mathcal{O}(p^k)$.
 

	
 
~
 

	
 
Furthermore, if site $j$ becomes zero when starting from $b_1$ it means all sites to the left of $j$ become zero as well. Similarly, from $b_2$ it implies all the sites to the right of $j$ become zero.
 
@@ -574,60 +580,60 @@ The intuition of the following lemma is that the far right can only affect the z
 
        P_{I'_{>k}}(\mathrm{NZ}^{(k)}) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{$k=I_{\max}\Rightarrow P_{I'_{<k}}(Z^{(0)}_k)=\mathcal{O}(p^{I_{\max}-|I'|})=\mathcal{O}(p^{I_{\max}+1-|I|})$}\\
 
		&=P_{I'}(Z^{(0)}) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{analogously to the beginning}			
 
	\end{align*}
 
\end{proof}
 

	
 
	The main insight that Lemma~\ref{lemma:probIndep} gives is that if we separate the slots to two halves, in order to see the cancellation of the contribution of the expected resamples on the right, we can simply pair up the left configurations by the particle filling the leftmost slot. And similarly for cancelling the left expectations we pair up right configurations based on the rightmost filling. 
 
	
 
	Also this claim finally ``sees'' how many empty places are between slots. These properties make it possible to use this lemma to prove the sought linear bound. We show it for the infinite chain, but with a little care it should also translate to the circle.
 

	
 
~
 

	
 
Here, I (Tom) tried to set up the same Lemma but for the circle instead of the infinite chain.
 
This time, it is no longer $I_\mathrm{max}$ but any vertex $i_* \in I$, and $I' = I \setminus \{i_*\}$. Without loss of generality, we can assume that $i_* \leq n/2$ (because if not then we can relabel the vertices and count the other way around so that $i_* \to n-i_*$). The goal is now to prove:
 
This time, it is no longer $I_\mathrm{max}$ but any vertex $i_* \in I$, and $I' = I \setminus \{i_*\}$. Without loss of generality, we can assume that $i_* \leq n/2$ so that the distance to $0$ is simply $d(i_*,0)=i_*$ (because if not then we can relabel the vertices and count the other way around so that $i_* \to n-i_*$). The goal is now to prove:
 
\begin{align*}
 
    P_I(Z^{(0)}) = P_{I'}(Z^{(0)}) + \mathcal{O}(p^{i_* + 1 - |I|})
 
    P_I(Z^{(0)}) = P_{I'}(Z^{(0)}) + \mathcal{O}(p^{\mathrm{d}(i_*,0) + 1 - |I|})
 
\end{align*}
 
Note that when we refer to an interval $[a,b]$ on the circle we could be referring to two possible intervals because of the periodicity of the circle. In the following, whenever we refer to an interval $[a,b]$ we refer to the interval with vertex 0 on the \emph{inside}.
 

	
 
For $a,b\in[n]$, define the event ``zeroes patch'' as the event of getting zeroes inside the interval $[a,b]$ but not on the boundary, i.e.  $\mathrm{ZP}^{[a,b]} = \mathrm{NZ}^{(a)} \cap \mathrm{Z}^{(a+1)} \cap \mathrm{Z}^{(a+2)} \cap \cdots \cap \mathrm{Z}^{(b-1)} \cap \mathrm{NZ}^{(b)}$ (where we assume that $\mathrm{Z}^{(0)}$ is part of this intersection).
 

	
 
Furthermore, define the `inside' and `outside' of $I$ as $I_{\mathrm{in}(a,b)} = I\cap[a,b]$ and $I_{\mathrm{out}(a,b)} = I \setminus [a,b]$.
 
The following diagram illustrates these definitions.
 
\begin{center}
 
    \includegraphics{diagram_circle_lemma.pdf}
 
\end{center}
 
\begin{align*}
 
    P_{I}(\mathrm{Z}^{(0)})
 
    &=\sum_{\substack{l,k=1\\k+l<n}}
 
    P_I(\mathrm{ZP}^{[n-l,k]}) \tag{the events are a partition}\\
 
    &=\sum_{\substack{l,k=1\\k+l<n\\k,n-l\notin I}}
 
    P_I(\mathrm{ZP}^{[n-l,k]}) \tag{$\mathbb{P}(\mathrm{ZP}^{[a,b]})=0$ for $a\in I$ or $b\in I$}
 
\end{align*}
 
Note that if $[-l,k]$ does not `touch' $I$ then $P_I(\mathrm{ZP}^{[-l,k]}) = 0$.
 
Furthermore, we have $P_I(\mathrm{ZP}^{[n-l,k]}) = \mathcal{O}(p^{k+l-1-|I_{\mathrm{in}(n-l,k)}|})$. If $k\geq i_*$ or $l\geq i_*$ then this gives $P_I(\mathrm{ZP}^{[n-l,k]}) = \mathcal{O}(p^{i_* - 1 - |I|})$ since $|I_\mathrm{in}| \leq |I|$. Therefore we have
 
Furthermore, we have $P_I(\mathrm{ZP}^{[n-l,k]}) = \mathcal{O}(p^{k+l-1-|I_{\mathrm{in}(n-l,k)}|})$. If $k > \mathrm{d}(i_*,0)$ or $l > \mathrm{d}(i_*,0)$ then this gives $P_I(\mathrm{ZP}^{[n-l,k]}) = \mathcal{O}(p^{\mathrm{d}(i_*,0) + 1 - |I|})$ since $|I_\mathrm{in}| \leq |I|$. Therefore we have
 
\begin{align*}
 
    P_I(\mathrm{Z}^{(0)})
 
    &=\sum_{\substack{l,k=1\\k,n-l\notin I}}^{i_*-1}
 
    P_I(\mathrm{ZP}^{[n-l,k]})
 
    + \mathcal{O}(p^{i_* - 1 - |I|}) \\
 
    + \mathcal{O}(p^{i_* + 1 - |I|}) \\
 
    &=\sum_{\substack{l,k=1\\k,n-l\notin I}}^{i_*-1}
 
    P_{I_{\mathrm{in}(n-l,k)}}(\mathrm{ZP}^{[n-l,k]}) \cdot
 
    P_{I_{\mathrm{out}(n-l,k)}}(\mathrm{NZ}^{(n-l,k)})
 
    + \mathcal{O}(p^{i_* - 1 - |I|}) \\
 
    + \mathcal{O}(p^{i_* + 1 - |I|}) \\
 
    \tag{by Claim~\ref{claim:eventindependence} for $n-l,k\notin I$} \\
 
    &=\sum_{\substack{l,k=1\\k,n-l\notin I}}^{i_*-1}
 
    P_{I'_{\mathrm{in}(n-l,k)}}(\mathrm{ZP}^{[n-l,k]}) \cdot
 
    P_{I_{\mathrm{out}(n-l,k)}}(\mathrm{NZ}^{(n-l,k)})
 
    + \mathcal{O}(p^{i_* - 1 - |I|})
 
    + \mathcal{O}(p^{i_* + 1 - |I|})
 
\end{align*}
 
Now we are supposed to use the induction step, but this is where I got stuck.
 

	
 

	
 
\begin{definition}[Connected patches]
 
	Let $\mathcal{P}\subset 2^{\mathbb{Z}}$ be a finite system of finite subsets of $\mathbb{Z}$. We say that the patch set of a resample sequence is $\mathcal{P}$,
 
	if the connected components of the vertices that have ever become $0$ are exactly the elements of $\mathcal{P}$. We denote by $A^{(\mathcal{P})}$ the event that the set of patches is $\mathcal{P}$. For a patch $P$ let $A^{(P)}=\bigcup_{\mathcal{P}:P\in \mathcal{P}}A^{(\mathcal{P})}$.
 
\end{definition} 
 
Note by Tom: So $A^{(\mathcal{P})}$ is the event that the set of all patches is \emph{exactly} $\mathcal{P}$ whereas $A^{(P)}$ is the event that one of the patches is equal to $P$ but there can be other patches as well.
 

	
 
\begin{definition}[Conditional expectations]
 
	Let $S\subset\mathbb{Z}$ be a finite slot configuration, and for $f\in\{0,1'\}^{|S|}$ let $I:=S(f)$ be the set of vertices filled with particles. 
0 comments (0 inline, 0 general)