Changeset - 280d2941c33b
[Not reviewed]
0 1 0
Tom Bannink - 8 years ago 2017-07-03 22:47:57
tombannink@gmail.com
Add conditional independence equation
1 file changed with 14 insertions and 8 deletions:
main.tex
14
8
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -443,6 +443,11 @@ It is useful to introduce some new notation:
 
        \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)}, A_1)
 
        \; \cdot \;
 
        \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)}, A_2) \\
 
        \mathbb{P}_b(A_1, A_2 \mid \mathrm{NZ}^{(j_1,j_2)})
 
        &=
 
        \mathbb{P}_{b_1}(A_1 \mid \mathrm{NZ}^{(j_1,j_2)})
 
        \; \cdot \;
 
        \mathbb{P}_{b_2}(A_2 \mid \mathrm{NZ}^{(j_1,j_2)}) \\
 
        R_{b,\mathrm{NZ}^{(j_1,j_2)},A_1,A_2}
 
        &=
 
        R_{b_1,\mathrm{NZ}^{(j_1,j_2)},A_1}
 
@@ -466,7 +471,8 @@ The lemma says that conditioned on $j_1$ and $j_2$ not being crossed, the two ha
 
        \; \cdot \;
 
        \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)},A_2).
 
    \end{align*}
 
    For the second equality, note that again by the same reasoning as in the proof of claim \ref{claim:expectationsum} we have
 
    The second equality follows directly from Bayes rule and removing $A_1,A_2$.
 
    For the third equality, note that again by the same reasoning as in the proof of claim \ref{claim:expectationsum} we have
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}^{(j_1,j_2)},A_1,A_2) R_{b,\mathrm{NZ}^{(j_1,j_2)},A_1,A_2}
 
        &:= \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}^{(j_1,j_2)}\cap A_1\cap A_2}} \mathbb{P}[\xi] |\xi| \\
 
@@ -478,7 +484,7 @@ The lemma says that conditioned on $j_1$ and $j_2$ not being crossed, the two ha
 
        &\quad +
 
        \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)},A_1) \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)},A_2) R_{b_2,\mathrm{NZ}^{(j_1,j_2)},A_2} .
 
    \end{align*}
 
    Dividing by $\mathbb{P}_b(\mathrm{NZ}_{j_1}\cap\mathrm{NZ}_{j_2},A_1,A_2)$ and using the first equality gives the desired result.
 
    Dividing by $\mathbb{P}_b(\mathrm{NZ}_{(j_1,j_2)},A_1,A_2)$ and using the first equality gives the desired result.
 
\end{proof}
 

	
 
\begin{comment}
 
@@ -583,9 +589,9 @@ The intuition of the following lemma is that the far right can only affect the z
 
~
 

	
 
Here, I (Tom) tried to set up the same Lemma but for the circle instead of the infinite chain.
 
This time, it is no longer $I_\mathrm{max}$ but any vertex $i_* \in I$, and $I' = I \setminus \{i_*\}$. Without loss of generality, we can assume that $i_* \leq n/2$ (because if not then we can relabel the vertices and count the other way around so that $i_* \to n-i_*$). The goal is now to prove:
 
This time, it is no longer $I_\mathrm{max}$ but any vertex $i_* \in I$, and $I' = I \setminus \{i_*\}$. Without loss of generality, we can assume that $i_* \leq n/2$ so that the distance to $0$ is simply $d(i_*,0)=i_*$ (because if not then we can relabel the vertices and count the other way around so that $i_* \to n-i_*$). The goal is now to prove:
 
\begin{align*}
 
    P_I(Z^{(0)}) = P_{I'}(Z^{(0)}) + \mathcal{O}(p^{i_* + 1 - |I|})
 
    P_I(Z^{(0)}) = P_{I'}(Z^{(0)}) + \mathcal{O}(p^{\mathrm{d}(i_*,0) + 1 - |I|})
 
\end{align*}
 
Note that when we refer to an interval $[a,b]$ on the circle we could be referring to two possible intervals because of the periodicity of the circle. In the following, whenever we refer to an interval $[a,b]$ we refer to the interval with vertex 0 on the \emph{inside}.
 

	
 
@@ -604,21 +610,21 @@ The following diagram illustrates these definitions.
 
    P_I(\mathrm{ZP}^{[n-l,k]}) \tag{$\mathbb{P}(\mathrm{ZP}^{[a,b]})=0$ for $a\in I$ or $b\in I$}
 
\end{align*}
 
Note that if $[-l,k]$ does not `touch' $I$ then $P_I(\mathrm{ZP}^{[-l,k]}) = 0$.
 
Furthermore, we have $P_I(\mathrm{ZP}^{[n-l,k]}) = \mathcal{O}(p^{k+l-1-|I_{\mathrm{in}(n-l,k)}|})$. If $k\geq i_*$ or $l\geq i_*$ then this gives $P_I(\mathrm{ZP}^{[n-l,k]}) = \mathcal{O}(p^{i_* - 1 - |I|})$ since $|I_\mathrm{in}| \leq |I|$. Therefore we have
 
Furthermore, we have $P_I(\mathrm{ZP}^{[n-l,k]}) = \mathcal{O}(p^{k+l-1-|I_{\mathrm{in}(n-l,k)}|})$. If $k > \mathrm{d}(i_*,0)$ or $l > \mathrm{d}(i_*,0)$ then this gives $P_I(\mathrm{ZP}^{[n-l,k]}) = \mathcal{O}(p^{\mathrm{d}(i_*,0) + 1 - |I|})$ since $|I_\mathrm{in}| \leq |I|$. Therefore we have
 
\begin{align*}
 
    P_I(\mathrm{Z}^{(0)})
 
    &=\sum_{\substack{l,k=1\\k,n-l\notin I}}^{i_*-1}
 
    P_I(\mathrm{ZP}^{[n-l,k]})
 
    + \mathcal{O}(p^{i_* - 1 - |I|}) \\
 
    + \mathcal{O}(p^{i_* + 1 - |I|}) \\
 
    &=\sum_{\substack{l,k=1\\k,n-l\notin I}}^{i_*-1}
 
    P_{I_{\mathrm{in}(n-l,k)}}(\mathrm{ZP}^{[n-l,k]}) \cdot
 
    P_{I_{\mathrm{out}(n-l,k)}}(\mathrm{NZ}^{(n-l,k)})
 
    + \mathcal{O}(p^{i_* - 1 - |I|}) \\
 
    + \mathcal{O}(p^{i_* + 1 - |I|}) \\
 
    \tag{by Claim~\ref{claim:eventindependence} for $n-l,k\notin I$} \\
 
    &=\sum_{\substack{l,k=1\\k,n-l\notin I}}^{i_*-1}
 
    P_{I'_{\mathrm{in}(n-l,k)}}(\mathrm{ZP}^{[n-l,k]}) \cdot
 
    P_{I_{\mathrm{out}(n-l,k)}}(\mathrm{NZ}^{(n-l,k)})
 
    + \mathcal{O}(p^{i_* - 1 - |I|})
 
    + \mathcal{O}(p^{i_* + 1 - |I|})
 
\end{align*}
 
Now we are supposed to use the induction step, but this is where I got stuck.
 

	
0 comments (0 inline, 0 general)