Changeset - 29be8ea7ee3c
[Not reviewed]
0 1 0
András Gilyén - 8 years ago 2017-09-07 02:44:49
gilyen@cwi.nl
simplified proof
1 file changed with 1 insertions and 1 deletions:
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -663,13 +663,13 @@ The intuition of the following lemma is that the far right can only affect the z
 
 		We proceed by induction on $k$. For $k=1,2$ the statement is trivial.
 
 		
 
 		Now observe that:
 
 		$$\P^{[k]}(\Z{1})=\sum_{P\text{ patch}\,:\,1\in P}\P^{[k]}(P\in\mathcal{P})$$
 
 		$$\P^{[k]}(\Z{k})=\sum_{P\text{ patch}\,:\,k\in P}\P^{[k]}(P\in\mathcal{P})$$
 
 		
 
 		Suppose we proved the statement up to $k-$, then we proceed using induction similarly to the above
 
 		Suppose we proved the statement up to $k-1$, then we proceed using induction similarly to the above
 
 		\begin{align*}
 
 		&\P^{[k]}(\Z{1}\cap \Z{k})=\\
 
 		&=\sum_{\ell, r\in [k]: \ell<r-1}\P^{[k]}([\ell],[r,k]\in\mathcal{P})
 
 		+\P^{[k]}([k]\in\mathcal{P})\\
 
 		&=\sum_{\ell, r\in [k]: \ell<r-1}\P^{[k]}([\ell],[r,k]\in\mathcal{P})
 
 		+\mathcal{O}(p^{k})\\
0 comments (0 inline, 0 general)