Changeset - 53e0f54cd945
[Not reviewed]
0 1 2
Tom Bannink - 8 years ago 2017-06-13 16:49:19
tom.bannink@cwi.nl
Add diagrams and proof of 'last part'
3 files changed with 129 insertions and 10 deletions:
0 comments (0 inline, 0 general)
diagram_patches.pdf
Show inline comments
 
new file 100644
 
binary diff not shown
diagram_patches.tex
Show inline comments
 
new file 100644
 
\documentclass{standalone}
 
\usepackage[T1]{fontenc}
 
\usepackage{amsmath}
 
\usepackage{amsfonts}
 
\usepackage{parskip}
 
\usepackage{marvosym} %Lightning symbol
 
\usepackage[usenames,dvipsnames]{color}
 
\usepackage[hidelinks]{hyperref}
 
\renewcommand*{\familydefault}{\sfdefault}
 

	
 
\usepackage{bbm} %For \mathbbm{1}
 
%\usepackage{bbold}
 
\usepackage{tikz}
 

	
 
\begin{document}
 

	
 
\begin{tikzpicture}
 
    % Cirlce
 
    \draw[gray] (0,0) -- (10,0);
 
    \draw[dotted] (0,2) -- (10,2);
 
    \draw[gray] (0,2) arc (90:270:1);
 
    \draw[gray] (10,0) arc (-90:90:1);
 
    \foreach \x in {0,...,20} {
 
        \draw ({0.5*\x},0) circle (0.04);
 
    }
 
    \foreach \a in {-3,...,3} {
 
        \draw (10,1)+({\a*20}:1) circle (0.04);
 
        \draw (0,1)+({180+\a*20}:1) circle (0.04);
 
    }
 
    % Numbers
 
    \foreach \x in {0,...,20} {
 
        \draw ({0.5*\x},0.3) node {$\x$};
 
    }
 
    % Patch P
 
    \draw[red] (0.5*6,-0.5) -- (0.5*14,-0.5);
 
    \foreach \x in {6,...,14} {
 
        \draw[fill,red]  ({0.5*\x},-0.5) circle (0.05);
 
    }
 
    % S cap P
 
    \foreach \x in {7,8,10,11,13} {
 
        \draw[fill,blue] ({0.5*\x},-1.0)+(-0.05,-0.05) rectangle +(0.05,0.05);
 
    }
 
    % S \ P
 
    \foreach \x in {1,2,4,16,17,19} {
 
        \draw ({0.5*\x},-1.0) circle (0.07);
 
    }
 
    \draw (3,1) node {$P_\mathrm{min}$};
 
    \draw (7,1) node {$P_\mathrm{max}$};
 
    \draw (0.5*1,1) node {$S_\mathrm{min}$};
 
    \draw (0.5*19,1) node {$S_\mathrm{max}$};
 
    \draw[->] (3,0.8) -- +(0,-0.3);
 
    \draw[->] (7,0.8) -- +(0,-0.3);
 
    \draw[->] (0.5*1,0.8) -- +(0,-0.3);
 
    \draw[->] (0.5*19,0.8) -- +(0,-0.3);
 

	
 
    \draw (0.5*2.5,-1.5) node {$\leftarrow S_\mathrm{left} \rightarrow$};
 
    \draw (0.5*17.5,-1.5) node {$\leftarrow S_\mathrm{right} \rightarrow$};
 

	
 
    % Rectangle around legend
 
    \draw (10.7,-0.2) rectangle (12.3,-1.8);
 

	
 
    \draw[fill,red] (11,-0.5) circle (0.05);
 
    \draw (11.1,-0.5) node[anchor=west] {$P$};
 

	
 
    \draw[fill,blue] (11,-1.0)+(-0.05,-0.05) rectangle +(0.05,0.05);
 
    \draw (11.1,-1.0) node[anchor=west] {$S\cap P$};
 

	
 
    \draw (11,-1.5) circle (0.07);
 
    \draw (11.1,-1.5) node[anchor=west] {$S\cap\overline{P}$};
 
\end{tikzpicture}
 

	
 
\end{document}
main.tex
Show inline comments
 
@@ -603,20 +603,67 @@ Note by Tom: So $A^{(\mathcal{P})}$ is the event that the set of all patches is
 
     \rho_{S(f)} R^{(P)}_{S(f)\cap P}\mathbb{P}_{S(f)}(A^{(P)}) \tag{by definition}\\        
 
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f\in\{0,1'\}^{|S|}}
 
    \rho_{S(f)} R^{(P)}_{S(f)\cap P}\mathbb{P}_{S(f)\cap P}(A^{(P)})\mathbb{P}_{S(f)\cap \overline{P}}(\overline{Z^{(P_{\min}-1)}}\cap\overline{Z^{(P_{\max}+1)}}) \tag{remember Definition~\ref{def:visitingResamplings} and use Claim~\ref{claim:eventindependence}}\\    
 
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f_P\in\{0,1'\}^{|S\cap P|}}
 
    \rho_{S(f_P)}  R^{(P)}_{S(f_P)}\mathbb{P}_{S(f_P)}(A^{(P)})
 
    \sum_{f_{\overline{P}}\in\{0,1'\}^{|S\cap \overline{P}|}}\rho_{S(f_{\overline{P}})}\mathbb{P}_{S(f_{\overline{P}})}(\overline{Z^{(P_{\min}-1)}}\cap\overline{Z^{(P_{\max}+1)}}) \\   
 
    &= \frac{1}{n}\sum_{S\subseteq [n]} \sum_{P\text{ patch}} \sum_{f_P\in\{0,1'\}^{|S\cap P|}}
 
    \rho_{S(f_P)} R^{(P)}_{S(f_P)} \mathbb{P}_{S(f_P)}(A^{(P)})
 
    \sum_{f_{\overline{P}}\in\{0,1'\}^{|S\cap \overline{P}|}} \rho_{S(f_{\overline{P}})} \mathbb{P}_{S(f_{\overline{P}})}(\overline{Z^{(P_{\min}-1)}}\cap\overline{Z^{(P_{\max}+1)}}) \\   
 
	&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f_P\in\{0,1'\}^{|S\cap P|}}
 
	\rho_{S(f_P)}
 
	\sum_{f_{\overline{P}}\in\{0,1'\}^{|S\cap \overline{P}|}}\rho_{S(f_{\overline{P}})}\mathcal{O}(p^{|S_{><}|}) \\             
 
        \sum_{f_{\overline{P}}\in\{0,1'\}^{|S\cap \overline{P}|}}\rho_{S(f_{\overline{P}})}\mathcal{O}(p^{|S_{><}|}) \tag{see below} \\
 
	&= \frac{1}{n}\sum_{S\subseteq [n]}\mathcal{O}(p^{|S|+|S_{><}|}).
 
    \end{align*}
 
   	
 
   	The penultimate inequality can be seen by case separation.
 
   	If $S_{><}\subseteq P$ then already $\mathbb{P}_{S(f_P)}(A^{(P)})=\mathcal{O}(p^{|S_{><}|})$.
 
   	Otherwise if all elements of $S_{><}\setminus P$ are larger than $P_{\max}$ then we view the last summation as $\sum_{f'_{\overline{P}}\in\{0,1'\}^{|S\cap \overline{P}\setminus\{S_{\max}\}|}}\sum_{f''_{\overline{P}}\in\{0,1'\}^{1}}$ and use Lemma~\ref{lemma:probIndep} to conclude the cancellations pairwise regarding the filling of $S_{\max}$, i.e., the value of $f''_{\overline{P}}$. We proceed similarly when 
 
   	all elements of $S_{><}\setminus P$ are smaller than $P_{\min}$. In the last case we again proceed similarly, but now the cancellations will come from the interplay of $4$ fillings, corresponding to the possible filling of $S_{\min}$ and $S_{\max}$ simultaneously.
 
   	   
 
\begin{figure}
 
	\begin{center}
 
    	\includegraphics{diagram_patches.pdf}
 
    \end{center}
 
    \caption{\label{fig:patches} Illustration of last steps of the proof.}
 
\end{figure}
 
    The penultimate inequality can be seen by case separation as follows: If $S\subseteq P$ then there is no splitting into $S\cap P$ and $S\setminus P$, and we already have $\mathbb{P}_{S(f_P)}(A^{(P)})=\mathcal{O}(p^{|S_{><}|})$ simply because the patch $P$ must be filled with zeroes that were not yet in $S$, so this is at least $|S_{><}|$ resampled zeroes. For the more general case, assume that $S$ is larger than $P$ on both sides of $P$. This is illustrated in Figure \ref{fig:patches}. We will focus on the following sum that was in the above equations:
 
    \begin{align*}
 
        \sum_{f_{\overline{P}}\in\{0,1'\}^{|S \cap \overline{P}|}} \rho_{S(f_{\overline{P}})} \mathbb{P}_{S(f_{\overline{P}})}(\overline{Z^{(P_{\min}-1)}}\cap\overline{Z^{(P_{\max}+1)}})
 
    \end{align*}
 
    By Lemma \ref{lemma:eventindependence} we can split this sum into two parts: the part to the left of $P$ and the part to the right of $P$. Define $S_\mathrm{left}=S\cap[S_\mathrm{min},P_{\mathrm{min}}-1]$ and $S_\mathrm{right}=S\cap[P_{\mathrm{max}}+1,S_\mathrm{max}]$, so that $S\cap\overline{P} = S_\mathrm{left} \cup S_\mathrm{right}$. These are also illustrated in Figure \ref{fig:patches}. Then we have
 
    \begin{align*}
 
        \mathbb{P}_{S(f_{\overline{P}})}(\overline{Z^{(P_{\min}-1)}}\cap\overline{Z^{(P_{\max}+1)}})
 
        &= \mathbb{P}_{S(f_{\mathrm{left}})}(\overline{Z^{(P_{\min}-1)}}) \;\cdot\; \mathbb{P}_{S(f_{\mathrm{right}})}(\overline{Z^{(P_{\max}+1)}})
 
    \end{align*}
 
    and hence we can split the sum. Without loss of generality we now only consider the `right' part of the sum:
 
    \begin{align*}
 
        \sum_{f\in\{0,1'\}^{|S_\mathrm{right}|}} \rho_{S_\mathrm{right}(f)} \mathbb{P}_{S_\mathrm{right}(f)}(\overline{Z^{(P_{\max}+1)}})
 
    \end{align*}
 
    Now further split this sum over the value of $f$ at position $S_\mathrm{max}$:
 
    \begin{align*}
 
        \sum_{f\in\{0,1'\}^{|S_\mathrm{right}\setminus\{S_\mathrm{max}\}|}} \sum_{f'\in\{0,1'\}}
 
        \rho_{S_\mathrm{right}(f\,f')} \mathbb{P}_{S_\mathrm{right}(f\,f')}(\overline{Z^{(P_{\max}+1)}})
 
    \end{align*}
 
    and we use the definition of $\rho$ for the sum over $f'$:
 
    \begin{align*}
 
         \sum_{f\in\{0,1'\}^{|S_\mathrm{right}\setminus\{S_\mathrm{max}\}|}}
 
        \rho_{S_\mathrm{right}(f)} \left(p \mathbb{P}_{S_\mathrm{right}(f\, 0)}(\overline{Z^{(P_{\max}+1)}}) + (-p) \mathbb{P}_{S_\mathrm{right}(f\, 1)}(\overline{Z^{(P_{\max}+1)}}) \right)
 
    \end{align*}
 
    Now we recognize the setup of Lemma~\ref{lemma:probIndep} with $I=S_\mathrm{right}(f\,0)$ and $I'=S_\mathrm{right}(f\,1)$. The lemma yields
 
    \begin{align*}
 
        \mathbb{P}_{S_\mathrm{right}(f\, 0)}(\overline{Z^{(P_{\max}+1)}}) &= \mathbb{P}_{S_\mathrm{right}(f\, 1)}(\overline{Z^{(P_{\max}+1)}}) + \mathcal{O}(p^{S_\mathrm{max}-(P_{\mathrm{max}}+1)+1-|S_\mathrm{right}|}) \\
 
        &= \mathbb{P}_{S_\mathrm{right}(f\, 1)}(\overline{Z^{(P_{\max}+1)}}) + \mathcal{O}(p^{S_\mathrm{max}-P_{\mathrm{max}}-|S_\mathrm{right}|}) .
 
    \end{align*}
 
    Entering this back into the sum gives
 
    \begin{align*}
 
         \sum_{f\in\{0,1'\}^{|S_\mathrm{right}\setminus\{S_\mathrm{max}\}|}}
 
        \rho_{S_\mathrm{right}(f)} \mathcal{O}(p^{S_\mathrm{max}-P_{\mathrm{max}}-|S_\mathrm{right}|+1})
 
         = \sum_{f\in\{0,1'\}^{|S_\mathrm{right}|}}
 
        \rho_{S_\mathrm{right}(f)} \mathcal{O}(p^{S_\mathrm{max}-P_{\mathrm{max}}-|S_\mathrm{right}|})
 
    \end{align*}
 
    One can do the same for the `left' part, which gives a term $\mathcal{O}(p^{P_\mathrm{min}-S_{\mathrm{min}}-|S_\mathrm{left}|})$. The part of $S$ that was within $P$ gives $\mathbb{P}_{S(f_P)}(A^{(P)})=\mathcal{O}(p^{P_\mathrm{max}-P_\mathrm{min}+1-|S\cap P|})$. Combining these three factors yields
 
    \begin{align*}
 
        (\textrm{left part})(P\textrm{ part})(\textrm{right part}) &=
 
\mathcal{O}(p^{P_\mathrm{min}-S_{\mathrm{min}}-|S_\mathrm{left}|}) \cdot \mathcal{O}(p^{P_\mathrm{max}-P_\mathrm{min}+1-|S\cap P|}) \cdot \mathcal{O}(p^{S_\mathrm{max}-P_{\mathrm{max}}-|S_\mathrm{right}|}) \\
 
        &= \mathcal{O}(p^{S_\mathrm{max}-S_\mathrm{min}+1-|S_\mathrm{left}\cup S_\mathrm{right}\cup (S\cap P)|})\\
 
        &= \mathcal{O}(p^{S_\mathrm{max}-S_\mathrm{min}+1-|S|})
 
        = \mathcal{O}(p^{|S_{><}|})
 
    \end{align*}
 
    as required. This finishes the proof.
 

	
 
    ~
 

	
 
	I think the same arguments would translate to the torus and other translationally invariant spaces, so we could go higher dimensional as Mario suggested. Then I think one would need to replace $|S_{><}|$ by the minimal number $k$ such that there is a $C$ set for which $S\cup C$ is connected. I am not entirely sure how to generalise Lemma~\ref{lemma:probIndep} though, which has key importance in the present proof.
 
    
 
    Questions:
0 comments (0 inline, 0 general)