Changeset - 77af5953ea57
[Not reviewed]
Merge
0 1 0
Tom Bannink - 8 years ago 2017-09-08 14:25:49
tom.bannink@cwi.nl
1 file changed with 6 insertions and 3 deletions:
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -793,12 +793,15 @@ The following lemma considers two vertices $v,w$ that are never ``crossed'' so t
 
\end{proof}
 

	
 
	\begin{definition}[Connected patches]
 
		Let $P$ be an interval $[a,b]$. We say that $P$ is a patch of a particular run of the process if $P$ is a maximal connected component of the vertices that have ever become $0$ before termination. We denote the set of patches of a run by $\mathcal{P}$. For a patch $P$ let $P\in \mathcal{P}$ denote the event that one of the patches is equal to $P$. 
 
		Let $P\subseteq V$ be a connected component of $G$. We say that $P$ is a patch of a particular run of the process if $P$ is a maximal connected component of the vertices that have ever become $0$ before termination. We denote the set of patches of a run by $\mathcal{P}$. For a patch $P$ let $P\in \mathcal{P}$ denote the event that one of the patches is equal to $P$. 
 
		In other words
 
		\begin{align*}
 
		P\in\mathcal{P} := \NZ{a-1} \cap \Z{a} \cap \Z{a+1} \cap \cdots \cap \Z{b-1} \cap \Z{b} \cap \NZ{b+1} .
 
		P\in\mathcal{P} := \NZ{\overline{\partial}P} \cap \Z{P}.
 
		\end{align*}
 
		For $\mathcaP{I}'\subseteq 2^{2^V}$ a set of patches we denote by $\mathcal{P}'\in \mathcal{P}$ the event that $\mathcal{P}'$ is a subset of the patches, i.e.,
 
		\begin{align*}
 
			\mathcal{P}'\in \mathcal{P} := \bigcup_{P\in \mathcal{P}'}\NZ{\overline{\partial}P} \cap \Z{P}.
 
		\end{align*}
 
		(In the extreme case when $P$ covers the whole cycle $[n]$, then instead $P\in\mathcal{P}:= \bigcap_{v\in[n]}\Z{v}$.)
 
	\end{definition} 
 

	
 
	We are often going to use the observation that we can partition the event $\Z{v}$ using patches:
0 comments (0 inline, 0 general)