Changeset - 82e90f72c8ad
[Not reviewed]
0 1 0
Tom Bannink - 8 years ago 2017-05-23 12:18:58
tom.bannink@cwi.nl
Fix pathsplit proof
1 file changed with 10 insertions and 4 deletions:
main.tex
10
4
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -344,32 +344,38 @@ For example for $b_1 = 10111111$ and $b_2 = 11111000$ we have $b=10111000$ and $
 
~
 

	
 
\begin{proof}
 
Consider a path $\xi_1\in\paths{b_1}$ and a path $\xi_2\in\paths{b_2}$ such that $\xi_1$ and $\xi_2$ are independent (Definition \ref{def:independence}). The paths $\xi_1,\xi_2$ induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ different paths of total length $|\xi_1|+|\xi_2|$ in $\paths{b_1\land b_2}$. In the sums $R_{b_1}$ and $R_{b_2}$, the contribution of these paths are $\mathbb{P}[\xi_1]\cdot |\xi_1|$ and $\mathbb{P}[\xi_2]\cdot |\xi_2|$. The next diagram shows how these $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths contribute to $R_{b_1\land b_2}$. At every step one has to choose between doing a step of path 1 or a step of path 2. The number of zeroes in the current state determine probabilities with which this happens (aside from the probabilities associated to the two original paths already). The grid below shows that at every point one can choose to do a step of path 1 with probability $p_i$ or a step of path 2 with probability $1-p_i$. These $p_i$ could in principle be different at every point in this grid. The weight of such a new path is the weight of the path in the diagram below, multiplied by $\mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]$. By induction one can show that the sum over all $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths in the grid is $1$. Hence the contribution of all $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths together to $R_{b_1\land b_2}$ is given by
 
\[
 
\mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]\cdot(|\xi_1|+|\xi_2|) = \mathbb{P}[\xi_2]\cdot\mathbb{P}[\xi_1]\cdot|\xi_1| \;\; + \;\; \mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]\cdot|\xi_2|.
 
\]
 
Ideally we would now like to sum this expression over all possible paths $\xi_1,\xi_2$ and use $p_\mathrm{tot}:=\sum_{\xi\in\paths{b_i}} \mathbb{P}[\xi] = 1$ (which also holds up to arbitrary order in $p$). The above expression would then become $R_{b_1} + R_{b_2}$. However, not all paths in the sum would satisfy the independence condition so it seems we can't do this. We now argue that it works up to order $p^{k-1}$.
 
For all $\xi\in\paths{b_1\land b_2}$ we have that \emph{either} $\xi$ splits into two independent paths $\xi_1,\xi_2$ as above, \emph{or} it does not. In the latter case, when $\xi$ can not be split like that, we know $\mathbb{P}[\xi]$ contains a power $p^k$ or higher because there is a gap of size $k$  and the paths must have moved at least $k$ times `towards each other' (for example one path moves $m$ times to the right and the other path moves $k-m$ times to the left). So the total weight of such a combined path is at least order $p^k$. Therefore we have
 
\[
 
	R_{b_1\land b_2} = \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1| + \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_1]\mathbb{P}[\xi_2]|\xi_2| + \sum_{\mathclap{\xi\;\mathrm{dependent}}} \mathbb{P}[\xi]|\xi|.
 
\]
 
The last sum only contains only terms of order $p^{k}$ or higher. Now for the first sum, note that
 
where last sum only contains only terms of order $p^{k}$ or higher. Now for the first sum, note that
 
\[
 
	\sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
    = \sum_{\xi_1\in\paths{b_1}} \sum_{\substack{\xi_2\in\paths{b_2}\\ \text{independent of }\xi_1}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
\]
 
where the sum over independent paths could be empty.
 
where the sum over independent paths could be empty for certain $\xi_1$. Now we replace this last sum by a sum over \emph{all} paths $\xi_2\in\paths{b_2}$. This will change the sum but only for terms where $\xi_1,\xi_2$ are dependent. For those terms we already know that $\mathbb{P}[\xi_1]\mathbb{P}[\xi_2]$ contains a factor $p^k$ and hence we have 
 
\begin{align*}
 
    \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
    &= \sum_{\xi_1\in\paths{b_1}} \sum_{\xi_2\in\paths{b_2}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1| + \mathcal{O}(p^k) \\
 
    &= \sum_{\xi_1\in\paths{b_1}} \mathbb{P}[\xi_1]|\xi_1| + \mathcal{O}(p^k) \\
 
    &= R_{b_1} + \mathcal{O}(p^k)
 
\end{align*}
 
we can do the same with the second term and this proves the claim.
 
\end{proof}
 

	
 
\begin{center}
 
\includegraphics{diagram_paths.pdf}
 
\end{center}
 

	
 
\textbf{Proof of claim \ref{claim:weakcancel}}: Say we have a group on the left with $l$ slots and a group on the right with $r$ slots, with enough space between the groups. Then on the left we have strings in $\{0,1'\}^l$ as possibilities and on the right we have strings in $\{0,1'\}^r$. The combined configuration can be described by strings $(a,b)\in\{0,1'\}^{l+r}$. Such a configuration has probability $(-1)^{|a|+|b|} p^{r+l}$ in $\rho$ and by claim \ref{claim:expectationsum} we know $R_{(a,b)} = R_a + R_b + \mathcal{O}(p^\mathrm{spacing})$. The total contribution of these configurations is therefore
 
\begin{align*}
 
	\sum_{a\in\{0,1'\}^l} \sum_{b\in\{0,1'\}^r} (-1)^{|a|+|b|}p^{r+l} \left( R_a + R_b \right) + \mathcal{O}(p^\mathrm{spacing})
 
    &= p^{r+l}\sum_{a\in\{0,1'\}^l} (-1)^{|a|} R_a \sum_{b\in\{0,1'\}^r} (-1)^{|b|} \\
 
    &\quad + p^{r+l}\sum_{b\in\{0,1'\}^r} (-1)^{|b|} R_b \sum_{a\in\{0,1'\}^l} (-1)^{|a|} \\
 
    &\quad + \mathcal{O}(p^\mathrm{spacing})\\
 
    &= 0 + \mathcal{O}(p^\mathrm{spacing})
 
\end{align*}
 
@@ -557,13 +563,13 @@ where we used the identity $\sum_{a\in\{0,1\}^l} (-1)^{|a|} = 0$.
 
    
 
    Note that the heart of the proof is \eqref{eq:keyIndependceOld}, so this is what we should double check.
 
    
 
    In fact I think the independence that we use in \eqref{eq:keyIndependceOld} can be also proven when we define a crossing as crossing the actual point, and not its $1$-neighborhood. It then would make it possible to define blocks as consecutive slacks. Also then we could actually use all points of the gaps not only the mid points. The requirement for the cancellation would be that there are ``not crossed'' labels from at least two distinct gaps. This would probably lead to the optimal $k+1$ bound giving the actual statement \ref{it:const}. 
 
    
 
    Speculation: The $n=k$ case would then probably not work because the all $0$ starting configuration is invariant under rotations.
 
    To actually go below $2k$ one needs to be careful, because there are periodic configurations that are invariant under some rotations causing double counting issues. This can be probably resolved by showing that when a pattern becomes periodic for some $n$ it actually produces periodicity times more expectation due to symmetry. But this is all just speculation.
 
\end{comment}
 

	
 
	\bibliographystyle{alpha}
 
	\bibliography{Resample.bib}
 
	
 
\end{document}
 
\ No newline at end of file
 
\end{document}
0 comments (0 inline, 0 general)