Changeset - 82e90f72c8ad
[Not reviewed]
0 1 0
Tom Bannink - 8 years ago 2017-05-23 12:18:58
tom.bannink@cwi.nl
Fix pathsplit proof
1 file changed with 9 insertions and 3 deletions:
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -353,14 +353,20 @@ For all $\xi\in\paths{b_1\land b_2}$ we have that \emph{either} $\xi$ splits int
 
\[
 
	R_{b_1\land b_2} = \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1| + \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_1]\mathbb{P}[\xi_2]|\xi_2| + \sum_{\mathclap{\xi\;\mathrm{dependent}}} \mathbb{P}[\xi]|\xi|.
 
\]
 
The last sum only contains only terms of order $p^{k}$ or higher. Now for the first sum, note that
 
where last sum only contains only terms of order $p^{k}$ or higher. Now for the first sum, note that
 
\[
 
	\sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
    = \sum_{\xi_1\in\paths{b_1}} \sum_{\substack{\xi_2\in\paths{b_2}\\ \text{independent of }\xi_1}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
\]
 
where the sum over independent paths could be empty.
 
where the sum over independent paths could be empty for certain $\xi_1$. Now we replace this last sum by a sum over \emph{all} paths $\xi_2\in\paths{b_2}$. This will change the sum but only for terms where $\xi_1,\xi_2$ are dependent. For those terms we already know that $\mathbb{P}[\xi_1]\mathbb{P}[\xi_2]$ contains a factor $p^k$ and hence we have 
 
\begin{align*}
 
    \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
    &= \sum_{\xi_1\in\paths{b_1}} \sum_{\xi_2\in\paths{b_2}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1| + \mathcal{O}(p^k) \\
 
    &= \sum_{\xi_1\in\paths{b_1}} \mathbb{P}[\xi_1]|\xi_1| + \mathcal{O}(p^k) \\
 
    &= R_{b_1} + \mathcal{O}(p^k)
 
\end{align*}
 
we can do the same with the second term and this proves the claim.
 
\end{proof}
 

	
 
\begin{center}
 
\includegraphics{diagram_paths.pdf}
 
\end{center}
0 comments (0 inline, 0 general)