Changeset - 9ad0b3287c70
[Not reviewed]
0 1 2
Tom Bannink - 8 years ago 2017-09-11 22:50:14
tombannink@gmail.com
Add diagram for proof of splitting lemma
3 files changed with 115 insertions and 1 deletions:
0 comments (0 inline, 0 general)
diagram_paths3.pdf
Show inline comments
 
new file 100644
 
binary diff not shown
diagram_paths3.tex
Show inline comments
 
new file 100644
 
\documentclass{standalone}
 
\usepackage[T1]{fontenc}
 
\usepackage{amsmath}
 
\usepackage{amsfonts}
 
\usepackage{parskip}
 
\usepackage{marvosym} %Lightning symbol
 
\usepackage[usenames,dvipsnames]{color}
 
\usepackage[hidelinks]{hyperref}
 
\renewcommand*{\familydefault}{\sfdefault}
 

	
 
\usepackage{bbm} %For \mathbbm{1}
 
%\usepackage{bbold}
 
\usepackage{tikz}
 

	
 
\begin{document}
 

	
 
\begin{tikzpicture}
 
    \def\height{4};
 
    \draw[step=1cm,gray,dotted] (-0.9,-0.9) grid (8.9,\height+0.9);
 

	
 
    %
 
    % Red line through grid
 
    %
 
    \draw [line width=3.0,red] (0,0) -- (0,1) -- (1,1) -- (2,1) -- (2,2);
 

	
 
    %
 
    % Arrows of the grid
 
    %
 
    \foreach \x in {0,...,7} {
 
        \foreach \y in {1,...,\height} {
 
            \draw[->] (\x,\y-1) -- (\x+0.9,\y-1);
 
            \draw[->] (\x,\y-1) -- (\x,\y-1+0.9);
 
        }
 
        \draw [->] (\x,\height) -- (\x+0.9,\height);
 
    }
 
    \foreach \y in {1,...,\height} %somehow the loop cant go to '\height-1'
 
        \draw [->] (8,\y-1) -- (8,\y-1+0.9); % so we fix it like this with '\y-1'
 

	
 
    %
 
    % Move labels
 
    %
 
    \foreach \y in {1,...,\height} {
 
        \draw (-1.2, \y - 0.5) node {$(z^Y_\y,v^Y_\y,r^Y_\y)$};
 
    }
 
    \foreach \x in {1,...,8} {
 
        \draw (\x-0.6, -1.7) node[rotate=70] {$(z^X_\x,v^X_\x,r^X_\x)$};
 
    }
 

	
 
    %
 
    % bitstring labels
 
    %
 

	
 
    \draw(-0.1,-0.4) node {$b^X\;1^S\;b^Y$};
 
    \draw(8.2,-0.4) node {$1^X\;1^S\;b^Y$};
 
    \draw (-0.2,\height+0.3) node {$b^X\;1^S\;1^Y$};
 
    \draw (8.2,\height+0.3) node {$\mathbf{1}$};
 

	
 

	
 
    %
 
    % -> steps of xi
 
    %
 

	
 
    \draw (4,-3.0) node {$\to$ steps of $\xi^{G\setminus Y}$};
 
    \node[rotate=90,anchor=south,xshift=2.0cm,yshift=2.3cm] {$\to$ steps of $\xi^{G\setminus X}$};
 

	
 
    %
 
    % (Red) circles
 
    %
 

	
 
    \draw[fill,red] (0,0) circle (0.08);
 
    \draw[fill    ] (8,0) circle (0.05);
 
    \draw[fill    ] (0,\height) circle (0.05);
 
    \draw[fill,red] (8,\height) circle (0.08);
 

	
 
    %
 
    % Probability labels
 
    %
 

	
 
    \def\x{6};
 
    \def\y{3};
 
    \draw[fill,black] (\x,\y) circle (0.07);
 
    \draw[fill=white,draw=black] (\x+0.23,\y-0.26) rectangle +(0.5,0.5);
 
    \draw[fill=white,draw=black] (\x-0.55,\y+0.26) rectangle +(1.1,0.5);
 
    \draw (\x+0.5,\y) node {$p_{ij}$};
 
    \draw (\x,\y+0.5) node {$1-p_{ij}$};
 

	
 
    \def\x{2};
 
    \def\y{1};
 
    \draw[fill,black] (\x,\y) circle (0.07);
 
    \draw[fill=white,draw=black] (\x+0.12,\y-0.26) rectangle +(0.7,0.5);
 
    \draw[fill=white,draw=black] (\x-0.75,\y+0.26) rectangle +(1.5,0.5);
 
    \draw (\x+0.5,\y) node {$p_{3,2}$};
 
    \draw (\x,\y+0.5) node {$1-p_{3,2}$};
 

	
 
    \def\x{8};
 
    \def\y{1};
 
    \draw[fill,black] (\x,\y) circle (0.07);
 
    \draw[fill=white,draw=black] (\x-0.25,\y+0.26) rectangle +(0.5,0.5);
 
    \draw (\x,\y+0.5) node {$1$};
 

	
 
    \def\x{3};
 
    \def\y{\height};
 
    \draw[fill,black] (\x,\y) circle (0.07);
 
    \draw[fill=white,draw=black] (\x+0.25,\y-0.25) rectangle +(0.5,0.5);
 
    \draw (\x+0.5,\y) node {$1$};
 

	
 
    %
 
    % Probability definition
 
    %
 
    \draw (10,2)+(-1,-0.5) rectangle +(1,0.5);
 
    \draw (10,2) node {$p_{ij} \equiv \frac{z^X_i}{z^X_i + z^Y_j}$};
 

	
 
\end{tikzpicture}
 
\end{document}
main.tex
Show inline comments
 
@@ -699,7 +699,7 @@ The following Lemma says that if a set $S$ splits the graph in two, then those t
 
    and similar for $\xi^{G\setminus X}$.
 
    Instead of choosing a step in $Y,X,X,Y,\cdots$ we could have chosen other orderings. The following diagram illustrates all possible interleavings, and the red line corresponds to the particular interleaving $Y,X,X,Y$ in the example above.
 
    \begin{center}
 
        \includegraphics{diagram_paths2.pdf} \todo{change to paths3.pdf}
 
        \includegraphics{diagram_paths3.pdf}
 
    \end{center}
 
    For the labels shown within the grid, define $p_{ij} = \frac{z^X_i}{z^X_i + z^Y_j}$.
 
    The probability of this particular interleaving $\xi^G$ is given by
0 comments (0 inline, 0 general)