Changeset - a43268439e66
[Not reviewed]
0 1 0
Andras Gilyen - 8 years ago 2017-09-11 19:55:55
gilyen@clayoquot.swat.cwi.nl
p_c characterization
1 file changed with 27 insertions and 4 deletions:
main.tex
27
4
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -164,7 +164,7 @@
 
			9 &	0 & 1 & 2 & 3+2/3 & 6.44 & 11.0 & 18.7 & 31.44 & \cellcolor{blue!25}52.30 & 86.27 & 140.7 & 226.3 & 358.4 & 558.4 & 855.4 & 1289.0 & 1911.5 & 2791.4 & 4017.2 & 5701.4 & 7985.9 \\
 
			10&	0 & 1 & 2 & 3+2/3 & 6.44 & 11.0 & 18.7 & 31.44 & 52.30 & \cellcolor{blue!25}86.49 & 142.1 & 231.6 & 373.4 & 594.8 & 934.4 & 1447.1 & 2209.0 & 3324.6 & 4934.8 & 7226.9 & 10447. \\
 
            \vdots \\
 
            15& 0 & 1 & 2 & 3+2/3 & 6.44 & 11.08 & 18.76 & 31.45 & 52.31 & 86.49 & 142.33 & 233.31 & 381.17 & 621.02 & \cellcolor{blue!25}1009.38 & 1637.13 & % 2650.74 & 4285.68 & 6913.55 & 11171.2 & 18052.2
 
            16& 0 & 1 & 2 & 3+2/3 & 6.44 & 11.08 & 18.76 & 31.45 & 52.31 & 86.49 & 142.33 & 233.31 & 381.17 & 621.02 & 1009.38 & \cellcolor{blue!25}1637.13 & % 2650.74 & 4285.68 & 6913.55 & 11171.2 & 18052.2
 
        \end{tabular}
 
	}
 
	\end{table}
 
@@ -941,12 +941,35 @@ The intuition of the following lemma is that the far right can only affect the z
 

	
 
Questions:
 
\begin{itemize}
 
	\item Can we generalise the proof to other translationally invariant spaces, like the torus?
 
	\item Can we prove some upper bound of the coefficients in the difference, other than they are zero for small powers?
 
	\item In view of this proof, can we better characterise $a_k^{(k+1)}$?
 
	\item Why did Mario's and Tom's simulation show that for fixed $C$ the contribution coefficients have constant sign? Is it relevant for proving \ref{it:pos}-\ref{it:geq}?
 
\end{itemize} 
 

	
 
	%I think the same arguments would translate to the torus and other translationally invariant spaces, so we could go higher dimensional as Mario suggested. Then I think one would need to replace $|S_{><}|$ by the minimal number $k$ such that there is a $C$ set for which $S\cup C$ is connected. I am not entirely sure how to generalise Lemma~\ref{lemma:probIndepNewGen} though, which has key importance in the present proof.
 
\newpage
 
\section{Characterisation of $p_c$}
 
\textbf{Conjecture} for a fixed $p\in [0,1]$ the following are equivalent:
 
\begin{enumerate}
 
	\item $\lim_{n\to\infty}\P^{[-n,n]}_{\overline{\{0\}}}(\Z{\{n\}})>0$
 
	\item $\P^{[-\infty,\infty]}_{\overline{\{0\}}}(\text{Not reaching the all 1 state})>0$
 
	\item $\P^{[-\infty,\infty]}(\NZ{\{0\}})>0$
 
	\item $\P^{[0,\infty]}(\NZ{\{0\}})>0$
 
	\item $\lim_{n\to\infty}\P^{[0,n]}(\NZ{\{0\}})>0$		
 
	\item $\exists c,\lambda>0:\P^{[-\infty,\infty]}(\Z{[k]})<ce^{-\lambda k}$
 
	\item $\exists c,\lambda>0:\mathrm{Cov}^{[-\infty,\infty]}(A,B)<ce^{-\lambda d(A,B)}$
 
	\item $\exists c,\lambda>0\,\forall n\in\mathbb{N}:\mathrm{Cov}^{[n]}(A,B)<ce^{-\lambda d(A,B)}$	
 
	\item $R^{(\infty)}<\infty$
 
\end{enumerate}
 
\begin{proof}
 
	$1\Leftrightarrow 2:$
 
	\begin{align*}
 
		\P^{[-\infty,\infty]}_{\overline{\{0\}}}(\text{Not reaching the all 1 state})>0
 
		&=\P^{[-\infty,\infty]}_{\overline{\{0\}}}(\text{Resampling arbitrary far away})>0\\
 
		&=\P^{[-\infty,\infty]}_{\overline{\{0\}}}\left(\bigcap_{n=1}^{\infty}\Z{\{-n\}}\cup\Z{\{n\}}\right)>0\\
 
		&=\lim_{n\to\infty}\P^{[-\infty,\infty]}(\Z{\{-n\}}_{\overline{\{0\}}}\cup\Z{\{n\}})>0\\
 
		&=\lim_{n\to\infty}\P^{[-n,n]}_{\overline{\{0\}}}(\Z{\{-n\}}\cup\Z{\{n\}})>0
 
	\end{align*}
 
\end{proof}
 

	
 

	
 
\newpage
 
\section{Quasiprobability method}
0 comments (0 inline, 0 general)