Changeset - ad16c1eb532f
[Not reviewed]
0 1 0
András Gilyén - 8 years ago 2017-09-10 16:12:37
gilyen@cwi.nl
counter examplegit pull
1 file changed with 1 insertions and 0 deletions:
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -180,6 +180,7 @@
 
  		\item $\exists p_c=\lim\limits_{k\rightarrow\infty}1\left/\sqrt[k]{a_{k}^{(k+1)}}\right.$ \label{it:lim}			
 
	\end{enumerate}
 
	\colorbox{red}{\ref{it:pos}-\ref{it:geq} is false since $a_{1114}^{(10)}<0$ -- needs to be double checked!}
 
	I figured this out by observing that $R^{(10)}(p)$ has a pole inside the disk of radius $0.96$. This also means that $R^{(10)}(p)=\sum_{k=0}^{\infty}a_k^{(10)}p^k$ is only true in an analytic sense, since for $p>0.96$ the right hand side does not converge.
 
	
 
	We also conjecture that $p_c\approx0.61$, see Figure~\ref{fig:coeffs_conv_radius}.
 

	
0 comments (0 inline, 0 general)