Changeset - adb803662770
[Not reviewed]
Merge
0 1 0
András Gilyén - 8 years ago 2017-09-07 01:31:35
gilyen@cwi.nl
1 file changed with 114 insertions and 2 deletions:
main.tex
114
2
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -378,219 +378,219 @@ When $b=b_1\land b_2\in\{0,1\}^n$ is a state with two groups ($b_1\lor b_2 = 1^n
 
    R_{b_2} &= 2 + 5p + 10.67p^2 + 21.11p^3+40.26p^4 + \mathcal{O}(p^5)\\
 
    R_{b} &= 3 + 8p + 17.67p^2 + 34.78p^3+65.27p^4 + \mathcal{O}(p^5)\\
 
    R_{b_1} + R_{b_2} &= 3 + 8p + 17.67p^2+35.78p^3 + 69.26p^4 +\mathcal{O}(p^5)
 
\end{align*}
 
and indeed the sums agree up to order $p^{k-1}=p^2$. When going up to order $p^{k}$ or higher, there will be terms where the groups interfere so they are no longer independent.
 

	
 
~
 

	
 
\begin{proof}
 
    Consider a path $\xi_1\in\paths{b_1}$ and a path $\xi_2\in\paths{b_2}$ such that $\xi_1$ and $\xi_2$ are independent (Definition \ref{def:independence} or \ref{def:independence2}). The paths $\xi_1,\xi_2$ induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ different paths of total length $|\xi_1|+|\xi_2|$ in $\paths{b_1\land b_2}$. In the sums $R_{b_1}$ and $R_{b_2}$, the contribution of these paths are $\mathbb{P}[\xi_1]\cdot |\xi_1|$ and $\mathbb{P}[\xi_2]\cdot |\xi_2|$. The next diagram shows how these $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths contribute to $R_{b_1\land b_2}$. Point $(i,j)$ in the grid indicates that $i$ steps of $\xi_1$ have been done and $j$ steps of $\xi_2$ have been done. At every point (except the top and right edges of the grid) one has to choose between doing a step of $\xi_1$ or a step of $\xi_2$. The number of zeroes in the current state determine the probabilities with which this happens (beside the probabilities associated to the two original paths already). The grid below shows that at a certain point one can choose to do a step of $\xi_1$ with probability $p_i$ or a step of $\xi_2$ with probability $1-p_i$. These $p_i$ could in principle be different at every point in this grid. The weight of such a new path $\xi\in\paths{b_1\land b_2}$ is $p_\mathrm{grid}\cdot\mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]$ where $p_\mathrm{grid}$ is the weight of the path in the diagram. By induction one can show that the sum over the $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ different terms $p_\mathrm{grid}$ is $1$.
 
\begin{center}
 
\includegraphics{diagram_paths.pdf}
 
\end{center}
 
 Hence the contribution of all $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths together to $R_{b_1\land b_2}$ is given by
 
\[
 
\mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]\cdot(|\xi_1|+|\xi_2|) = \mathbb{P}[\xi_2]\cdot\mathbb{P}[\xi_1]\cdot|\xi_1| \;\; + \;\; \mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2]\cdot|\xi_2|.
 
\]
 
Ideally we would now like to sum this expression over all possible paths $\xi_1,\xi_2$ and use $p_\mathrm{tot}:=\sum_{\xi\in\paths{b_i}} \mathbb{P}[\xi] = 1$ (which also holds up to arbitrary order in $p$). The above expression would then become $R_{b_1} + R_{b_2}$. However, not all paths in the sum would satisfy the independence condition so it seems we can't do this. We now argue that it works up to order $p^{k-1}$.
 
For all $\xi\in\paths{b_1\land b_2}$ we have that \emph{either} $\xi$ splits into two independent paths $\xi_1,\xi_2$ as above, \emph{or} it does not. In the latter case, when $\xi$ can not be split like that, we know $\mathbb{P}[\xi]$ contains a power $p^k$ or higher because there is a gap of size $k$  and the paths must have moved at least $k$ times `towards each other' (for example one path moves $m$ times to the right and the other path moves $k-m$ times to the left). So the total weight of such a combined path is at least order $p^k$. Therefore we have
 
\[
 
	R_{b_1\land b_2} = \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1| + \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_1]\mathbb{P}[\xi_2]|\xi_2| + \sum_{\mathclap{\xi\;\mathrm{dependent}}} \mathbb{P}[\xi]|\xi|.
 
\]
 
where last sum only contains only terms of order $p^{k}$ or higher. Now for the first sum, note that
 
\[
 
	\sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
    = \sum_{\xi_1\in\paths{b_1}} \sum_{\substack{\xi_2\in\paths{b_2}\\ \text{independent of }\xi_1}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
\]
 
where the sum over independent paths could be empty for certain $\xi_1$. Now we replace this last sum by a sum over \emph{all} paths $\xi_2\in\paths{b_2}$. This will change the sum but only for terms where $\xi_1,\xi_2$ are dependent. For those terms we already know that $\mathbb{P}[\xi_1]\mathbb{P}[\xi_2]$ contains a factor $p^k$ and hence we have 
 
\begin{align*}
 
    \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
    &= \sum_{\xi_1\in\paths{b_1}} \sum_{\xi_2\in\paths{b_2}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1| + \mathcal{O}(p^k) \\
 
    &= \sum_{\xi_1\in\paths{b_1}} \mathbb{P}[\xi_1]|\xi_1| + \mathcal{O}(p^k) \\
 
    &= R_{b_1} + \mathcal{O}(p^k)
 
\end{align*}
 
we can do the same with the second term and this proves the claim.
 
\end{proof}
 

	
 
~\\
 
\textbf{Proof of claim \ref{claim:weakcancel}}: We can assume $C$ consists of a group on the left with $l$ slots and a group on the right with $r$ slots (so $r+l=|C|$), with a gap of size $k=\mathrm{gap}(C)$ between these groups. Then on the left we have strings in $\{0,1'\}^l$ as possibilities and on the right we have strings in $\{0,1'\}^r$. The combined configuration can be described by strings $f=(a,b)\in\{0,1'\}^{l+r}$. The initial probability of such a state $C(a,b)$ is $\rho_{C(a,b)} = (-1)^{|a|+|b|} p^{r+l}$ and by claim \ref{claim:expectationsum} we know $R_{C(a,b)} = R_{C(a)} + R_{C(b)} + \mathcal{O}(p^k)$ where $C(a)$ indicates that only the left slots have been filled by $a$ and the other slots are filled with $1$s. The total contribution of these configurations is therefore
 
\begin{align*}
 
    \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)}
 
    &= \sum_{a\in\{0,1'\}^l} \sum_{b\in\{0,1'\}^r} (-1)^{|a|+|b|}p^{r+l} \left( R_{C(a)} + R_{C(b)} + \mathcal{O}(p^k) \right) \\
 
    &=\;\;\; p^{r+l}\sum_{a\in\{0,1'\}^l} (-1)^{|a|} R_{C(a)} \sum_{b\in\{0,1'\}^r} (-1)^{|b|} \\
 
    &\quad + p^{r+l}\sum_{b\in\{0,1'\}^r} (-1)^{|b|} R_{C(b)} \sum_{a\in\{0,1'\}^l} (-1)^{|a|}
 
        + \mathcal{O}(p^{r+l+k})\\
 
    &= 0 + \mathcal{O}(p^{|C|+k})
 
\end{align*}
 
where we used the identity $\sum_{a\in\{0,1\}^l} (-1)^{|a|} = 0$.
 

	
 
\newpage
 
\subsection{Proving the strong cancellation claim}
 
It is useful to introduce some new notation. Note that an \emph{event} is a subset of all possible paths of the Markov Chain.
 
\begin{definition}[Events conditioned on starting state] \label{def:conditionedevents}
 
    For any state $b\in\{0,1\}^n$, define $\textsc{start}(b)$ as the event that the starting state of the chain is the state $b$. For any event $A$, define
 
    \begin{align*}
 
        \mathbb{P}_b(A) &= \mathbb{P}(A \;|\; \textsc{start}(b)) \\
 
        R_{b,A} &= \mathbb{E}( \#resamples \;|\; A \; , \; \textsc{start}(b))
 
    \end{align*}
 
\end{definition}
 
\begin{definition}[Vertex visiting event] \label{def:visitingResamplings}
 
    Denote by $\mathrm{Z}^{(j)}$ the event that site $j$ becomes zero at any point in time before the Markov Chain terminates. Denote the complement by $\mathrm{NZ}^{(j)}$, i.e. the event that site $j$ does \emph{not} become zero before it terminates. Furthermore define $\mathrm{NZ}^{(j_1,j_2)} := \mathrm{NZ}^{(j_1)} \cap \mathrm{NZ}^{(j_2)}$, i.e. the event that \emph{both} $j_1$ and $j_2$ do not become zero before termination.
 
\end{definition}
 
\begin{figure}
 
	\begin{center}
 
    	\includegraphics{diagram_groups.pdf}
 
    \end{center}
 
    \caption{\label{fig:separatedgroups} Illustration of setup of Lemma \ref{lemma:eventindependence}. Here $b_1,b_2\in\{0,1\}^n$ are bitstrings such that all zeroes of $b_1$ and all zeroes of $b_2$ are separated by two indices $j_1,j_2$.}
 
\end{figure}
 
\begin{lemma}[Conditional independence] \label{lemma:eventindependence} \label{claim:eventindependence}
 
    Let $b=b_1\land b_2\in\{0,1\}^n$ be a state with two groups ($b_1\lor b_2 = 1^n$) of zeroes that are separated by at least one site inbetween, as in Figure \ref{fig:separatedgroups}. Let $j_1$, $j_2$ be any indices inbetween the groups, such that $b_1$ lies on one side of them and $b_2$ on the other, as shown in the figure. Furthermore, let $A_1$ be any event that depends only on the sites ``on the $b_1$ side of $j_1,j_2$'', and similar for $A_2$ (for example $\mathrm{Z}^{(i)}$ for an $i$ on the correct side). Then we have
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}^{(j_1,j_2)}, A_1, A_2)
 
        &=
 
        \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)}, A_1)
 
        \; \cdot \;
 
        \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)}, A_2) \\
 
        \mathbb{P}_b(A_1, A_2 \mid \mathrm{NZ}^{(j_1,j_2)})
 
        &=
 
        \mathbb{P}_{b_1}(A_1 \mid \mathrm{NZ}^{(j_1,j_2)})
 
        \; \cdot \;
 
        \mathbb{P}_{b_2}(A_2 \mid \mathrm{NZ}^{(j_1,j_2)}) \\
 
        R_{b,\mathrm{NZ}^{(j_1,j_2)},A_1,A_2}
 
        &=
 
        R_{b_1,\mathrm{NZ}^{(j_1,j_2)},A_1}
 
        \; + \;
 
        R_{b_2,\mathrm{NZ}^{(j_1,j_2)},A_2}
 
    \end{align*}
 
    up to any order in $p$.
 
\end{lemma}
 
The lemma says that conditioned on $j_1$ and $j_2$ not being crossed, the two halves of the cycle are independent. 
 

	
 
\begin{proof}
 
    From any path $\xi\in\paths{b} \cap \mathrm{NZ}^{(j_1,j_2)}$ we can construct paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}^{(j_1,j_2)}$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}^{(j_1,j_2)}$ as follows. Let us write the path $\xi$ as
 
    $$\xi=\left( (z_1, s_1, r_1), (z_2, s_2, r_2), ..., (z_{|\xi|}, s_{|\xi|}, r_{|\xi|}) \right)$$
 
    where $z_i\in[n]$ denotes the number of zeroes in the state before the $i$th step, $s_i\in [n]$ denotes the site that was resampled and $r_i\in \{0,1\}^3$ is the result of the three resampled bits. We have
 
    \begin{align*}
 
        \P_b[\xi] &= \P(\text{choose }s_1) \P(r_1) \P(\text{choose }s_2) \P(r_2) \cdots \P(\text{choose }s_{|\xi|}) \P(r_{|\xi|}) \\
 
        \P_b[\xi] &= \P(\text{pick }s_1) \P(r_1) \P(\text{pick }s_2) \P(r_2) \cdots \P(\text{pick }s_{|\xi|}) \P(r_{|\xi|}) \\
 
                &= \frac{1}{z_1} \P(r_1) \frac{1}{z_2} \P(r_2) \cdots \frac{1}{z_{|\xi|}} \P(r_{|\xi|}) .
 
    \end{align*}
 
    To construct $\xi_1$ and $\xi_2$, start with empty sequences $\xi_1,\xi_2$ and for each step $(z_i,s_i,r_i)$ in $\xi$ do the following: if $s_i$ is ``on the $b_1$ side of $j_1,j_2$'' then add $(z^{(1)}_i,s_i,r_i)$ to $\xi_1$ and if its ``on the $b_2$ side of $j_1,j_2$'' then add $(z^{(2)}_i,s_i,r_i)$ to $\xi_2$. Here $z^{(1)}_i$ is the number of zeroes that were on the $b_1$ side and $z^{(2)}_i$ is the number of zeroes on the $b_2$ side so we have $z_i = z^{(1)}_i + z^{(2)}_i$.
 
    %Let the resulting paths be
 
    %\begin{align*}
 
    %    \xi_1 &= \left( (z^{(1)}_{a_1}, s_{a_1}, r_{a_1}), (z^{(1)}_{a_2}, s_{a_2}, r_{a_2}), ..., (z^{(1)}_{a_{|\xi_1|}}, s_{a_{|\xi_1|}}, r_{a_{|\xi_1|}}) \right) \\
 
    %    \xi_2 &= \left( (z^{(2)}_{b_1}, s_{b_1}, r_{b_1}), (z^{(2)}_{b_2}, s_{b_2}, r_{b_2}), ..., (z^{(2)}_{b_{|\xi_1|}}, s_{b_{|\xi_1|}}, r_{b_{|\xi_1|}}) \right)
 
    %\end{align*}
 
    Now $\xi_1$ is a valid (terminating) path from $b_1$ to $\mathbf{1}$, because in the original path $\xi$, all zeroes ``on the $b_1$ side'' have been resampled by resamplings ``on the $b_1$ side''. Since the sites $j_1,j_2$ inbetween never become zero, there can not be any zero ``on the $b_1$ side'' that was resampled by a resampling ``on the $b_2$ side''.
 
    Vice versa, any two paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}^{(j_1,j_2)}$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}^{(j_1,j_2)}$ also induce a path $\xi\in\paths{b} \cap \mathrm{NZ}^{(j_1,j_2)}$ by simply interleaving the resampling positions. Note that $\xi_1,\xi_2$ actually induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths $\xi$ because of the possible orderings of interleaving the resamplings in $\xi_1$ and $\xi_2$.
 
    For a fixed $\xi_1,\xi_2$ we will now show the following:
 
    \begin{align*}
 
        \sum_{\substack{\xi\in\paths{b} \cap \mathrm{NZ}^{(j_1,j_2)} \text{ s.t.}\\ \xi \text{ decomposes into } \xi_1,\xi_2 }} \P_b[\xi] &=
 
        \sum_{\text{interleavings of }\xi_1,\xi_2} \P(\text{interleaving}) \cdot \P_{b_1}[\xi_1] \cdot \P_{b_2}[\xi_2] \\
 
        &= \P_{b_1}[\xi_1] \cdot \P_{b_2}[\xi_2]
 
    \end{align*}
 
    where both sums are over $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ terms.
 
    This is best explained by an example. Lets consider the following fixed $\xi_1,\xi_2$ and an example interleaving where we choose steps from $\xi_2,\xi_1,\xi_1,\xi_2,\cdots$:
 
    \begin{align*}
 
        \xi_1 &= \left( (z_1, s_1, r_1), (z_2, s_2, r_2), (z_3, s_3, r_3), (z_4, s_4, r_4),\cdots  \right) \\
 
        \xi_2 &= \left( (z_1', s_1', r_1'), (z_2', s_2', r_2'), (z_3', s_3', r_3'), (z_4', s_4', r_4'),\cdots  \right) \\
 
        \xi   &= \left( (z_1 + z_1', s_1', r_1'), (z_1+z_2', s_1, r_1), (z_2+z_2', s_2, r_2), (z_3+z_2', s_2', r_2'), \cdots \right)
 
    \end{align*}
 
    The probability of $\xi_1$, started from $b_1$, is given by
 
    \begin{align*}
 
        \P_{b_1}[\xi_1] &= \P(\text{choose }s_1) \P(r_{a_1}) \P(\text{choose }s_2) \P(r_{a_2}) \cdots \P(\text{choose }s_{|\xi_1|}) \P(r_{|\xi_1|}) \\
 
        \P_{b_1}[\xi_1] &= \P(\text{pick }s_1) \P(r_1) \P(\text{pick }s_2) \P(r_2) \cdots \P(\text{pick }s_{|\xi_1|}) \P(r_{|\xi_1|}) \\
 
                &= \frac{1}{z_1} \P(r_1) \frac{1}{z_2} \P(r_2) \cdots \frac{1}{z_{|\xi_1|}} \P(r_{|\xi_1|}) .
 
    \end{align*}
 
    and similar for $\xi_2$ but with primes.
 
    The following diagram illustrates all possible interleavings, and the red line corresponds to the particular interleaving $\xi$ in the example above.
 
    \begin{center}
 
        \includegraphics{diagram_paths2.pdf}
 
    \end{center}
 
    For the labels shown within the grid, define $p_{ij} = \frac{z_i}{z_i + z_j'}$.
 
    The probability of $\xi$ is given by
 
    \begin{align*}
 
        \P_b[\xi] &= \frac{1}{z_1+z_1'} \P(r_1') \frac{1}{z_1+z_2'} \P(r_1) \frac{1}{z_2+z_2'} \P(r_2) \frac{1}{z_3+z_2'} \P(r_2') \cdots \tag{by definition}\\
 
        &=
 
        \frac{z_1'}{z_1+z_1'} \frac{1}{z_1'} \P(r_1') \;
 
        \frac{z_1 }{z_1+z_2'} \frac{1}{z_1 } \P(r_1 ) \;
 
        \frac{z_2 }{z_2+z_2'} \frac{1}{z_2 } \P(r_2 ) \;
 
        \frac{z_2'}{z_3+z_2'} \frac{1}{z_2'} \P(r_2')
 
        \cdots \tag{rewrite fractions}\\
 
        &=
 
        \frac{z_1'}{z_1+z_1'} \;
 
        \frac{z_1 }{z_1+z_2'} \;
 
        \frac{z_2 }{z_2+z_2'} \;
 
        \frac{z_2'}{z_3+z_2'}
 
        \cdots
 
        \P_{b_1}[\xi_1] \; \P_{b_2}[\xi_2] \tag{definition of $\P_{b_i}[\xi_i]$} \\
 
        &= (1-p_{1,1}) \; p_{1,2} \; p_{2,2} \; (1-p_{3,2}) \; \P_{b_1}[\xi_1] \; \P_{b_2}[\xi_2] \tag{definition of $p_{i,j}$} \\
 
        &= \P(\text{path in grid}) \; \P_{b_1}[\xi_1] \; \P_{b_2}[\xi_2]
 
    \end{align*}
 
    In the grid we see that at every point the probabilities sum to 1, and we always reach the end, so we know the sum of all paths in the grid is 1. This proves the required equality.
 

	
 
    We obtain
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}^{(j_1,j_2)},A_1,A_2)
 
        &= \sum_{\substack{\xi\in\paths{b} \cap \\ \mathrm{NZ}^{(j_1,j_2)}\cap A_1\cap A_2}} \mathbb{P}[\xi] \\
 
        &= \sum_{\substack{\xi_1\in\paths{b_1} \cap \\ \mathrm{NZ}^{(j_1,j_2)}\cap A_1}} \;\;
 
          \sum_{\substack{\xi_2\in\paths{b_1} \cap \\ \mathrm{NZ}^{(j_1,j_2)}\cap A_2}}
 
        \mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2] \\
 
        &=
 
        \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)},A_1)
 
        \; \cdot \;
 
        \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)},A_2).
 
    \end{align*}
 
    The second equality follows directly from $\mathbb{P}(A\mid B)=\mathbb{P}(A,B)/\mathbb{P}(B)$ and setting $A_1,A_2$ to the always-true event.
 
    For the third equality, by the same reasoning we can decompose the paths
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}^{(j_1,j_2)},A_1,A_2) R_{b,\mathrm{NZ}^{(j_1,j_2)},A_1,A_2}
 
        &\equiv \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}^{(j_1,j_2)}\cap A_1\cap A_2}} \mathbb{P}[\xi] |\xi| \\
 
        &= \sum_{\substack{\xi_1\in\paths{b_1}\\\xi_1 \in \mathrm{NZ}^{(j_1,j_2)}\cap A_1}}
 
          \sum_{\substack{\xi_2\in\paths{b_2}\\\xi_2 \in \mathrm{NZ}^{(j_1,j_2)}\cap A_2}}
 
        \mathbb{P}[\xi_1]\mathbb{P}[\xi_2] (|\xi_1| + |\xi_2|) \\
 
        &=
 
        \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)},A_2) \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)},A_1) R_{b_1,\mathrm{NZ}^{(j_1,j_2)},A_1} \\
 
        &\quad +
 
        \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)},A_1) \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)},A_2) R_{b_2,\mathrm{NZ}^{(j_1,j_2)},A_2} .
 
    \end{align*}
 
    Dividing by $\mathbb{P}_b(\mathrm{NZ}_{(j_1,j_2)},A_1,A_2)$ and using the first equality gives the desired result.
 
\end{proof}
 

	
 
\begin{comment}
 
TEST: Although a proof of claim \ref{claim:expectationsum} was already given, I'm trying to prove it in an alternate way using claim \ref{claim:eventindependence}.
 

	
 
~
 

	
 
Assume that $b_1$ ranges up to site $0$, the gap ranges from sites $1,...,k$ and $b_2$ ranges from site $k+1$ and onwards. For $j=1,...,k$ define the ``partial-zeros'' event $\mathrm{PZ}_j = \mathrm{Z}_1 \cap \mathrm{Z}_2 \cap ... \cap \mathrm{Z}_{j-1} \cap \mathrm{NZ}_j$ i.e. the first $j-1$ sites of the gap become zero and site $j$ does not become zero. Also define the ``all-zeros'' event $\mathrm{AZ} = \mathrm{Z}_1 \cap ... \cap \mathrm{Z}_k$, where all sites of the gap become zero. Note that these events partition the space, so we have for all $b$ that $\sum_{j=1}^k \mathbb{P}_b(\mathrm{PZ}_j) = 1 - \mathbb{P}_b(\mathrm{AZ}) = 1 - \mathcal{O}(p^k)$.
 

	
 
~
 

	
 
Furthermore, if site $j$ becomes zero when starting from $b_1$ it means all sites to the left of $j$ become zero as well. Similarly, from $b_2$ it implies all the sites to the right of $j$ become zero.
 
Because of that, we have
 
\begin{align*}
 
    \mathbb{P}_{b_1}(\mathrm{PZ}_j) &= \mathbb{P}_{b_1}(\mathrm{Z}_{j-1} \cap \mathrm{NZ}_j) = \mathcal{O}(p^{j-1}) \\
 
    \mathbb{P}_{b_2}(\mathrm{NZ}_j) &= 1 - \mathbb{P}_{b_2}(\mathrm{Z}_j) = 1 - \mathcal{O}(p^{k-j+1})
 
\end{align*}
 
Following the proof of claim \ref{claim:eventindependence} we also have
 
\begin{align*}
 
    \mathbb{P}_b(\mathrm{PZ}_{j})
 
    &=
 
    \mathbb{P}_{b_1}(\mathrm{PZ}_{j})
 
    \; \cdot \;
 
    \mathbb{P}_{b_2}(\mathrm{NZ}_{j}) \\
 
    R_{b,\mathrm{PZ}_{j}}
 
    &=
 
    R_{b_1,\mathrm{PZ}_{j}}
 
    \; + \;
 
    R_{b_2,\mathrm{NZ}_{j}}
 
\end{align*}
 

	
 

	
 
Now observe that
 
\begin{align*}
 
    R_b &= \sum_{j=1}^k \mathbb{P}_b(\mathrm{PZ}_j) R_{b,\mathrm{PZ}_j} + \mathbb{P}_b(\mathrm{AZ}) R_{b,\mathrm{AZ}} \\
 
        &= \sum_{j=1}^k \mathbb{P}_{b_2}(\mathrm{NZ}_j)\mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
 
        + \mathcal{O}(p^k) \\
 
        &= \sum_{j=1}^k \mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        - \sum_{j=1}^k \mathbb{P}_{b_2}(\mathrm{Z}_j)\mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
 
@@ -1220,100 +1220,212 @@ Here, I (Tom) tried to set do the same Lemma but for the cycle instead of the in
 
	When we write $R_{C(f)}$ we mean $R_{C(\bar{f})}$, i.e., replace $1'$-s with $1$-s. Since the notation is already heavy we dropped the bar from $f$, as it is clear from the context.
 
    
 
    As in Definition~\ref{def:constrainedRes} for $j\in[n-|C|]$ let $i_j$ denote the $j$-th index in $[n]\setminus C$.
 
    Suppose that $a$ is such that there are two indices $j_1\neq j_2$ such that 
 
    $a_{j_1}=\neg\text{res}=a_{j_2}$, moreover the sets $\{i_{j_1}+1,\ldots, i_{j_2}-1\}$ and $\{i_{j_2}+1,\ldots, i_{j_1}-1\}$ partition $C$ non-trivially, and we denote by $C_l$,$C_r$ the corresponding partitions. 
 
    We claim that 
 
    $$\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)=0.$$
 
    
 
	This is based on the observation that that for all $f\in\{0,1'\}^{|C|}$ we have 
 
    that 
 
    \begin{equation}\label{eq:keyIndependceWrong}
 
    R^{{(C,a)}}_{C(f)}(p)=R^{{(C_l,a_l)}}_{C_l(f_l)}(p)+R^{{(C_r,a_r)}}_{C_r(f_r)}(p),
 
    \end{equation}
 
    where $f_l\in\{0,1'\}^{|C_l|}$ is defined as taking only the indices (and values) of $f$ corresponding to vertices of $C_l$, also $a_l\in[n-|C_l|]$ is defined such that $a$ and $a_l$ agree on vertices where $a$ is defined, and on the vertices where $a$ is not defined, i.e., the vertices of $C_r$ we define $a_l$ to contain $\neg\text{res}$. We define things analogously for $f_r$ and $a_r$.
 
    
 
    The reason why \eqref{eq:keyIndependceWrong} holds is as before that the two halves of the cycle are conditionally independent because neither $i_{j_1}$ nor $i_{j_2}$ are resampled. One could probably also argue similarly as Tom's grid figure shows. 
 
    From here the proof goes just as in Mario's proof:
 
    \begin{align*}
 
    \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)&=
 
    \sum_{f_l\in\{0,1'\}^{|C_l|}} \sum_{f_r\in\{0,1'\}^{|C_r|}}  (-1)^{|f_l|+|f_r|}p^{|C_l|+|C_r|} \left( R^{{(C_l,a_l)}}_{C_l(f_l)}(p) + R^{{(C_r,a_r)}}_{C_r(f_l)}(p) \right)\\
 
    &= p^{|C|}\sum_{f_l\in\{0,1'\}^{|C_l|}} (-1)^{|f_l|} R^{{(C_l,a_l)}}_{C_l(f_l)}(p) \sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_r|} \\
 
    &\quad + p^{|C|}\sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_r|} R^{{(C_r,a_r)}}_{C_r(f_r)}(p) \sum_{f_l\in\{0,1'\}^{|C_l|}} (-1)^{|f_l|} \\
 
    &= 0.
 
    \end{align*}
 
    
 
    Observe that it implies that the only non-zero contribution comes from pairs $(C,a)$ such that $C\cup\{i_j:a_j=\text{res}\}$ is connected. This is because if this set is not connected, then either we can cut $C$ to two halves non-trivially along $\neg\text{res}$ vertices, or there is an island of $\text{res}$ vertices separated from any slots, and therefore from any $0$-s. This latter case has zero contribution since we cannot resample these indices without first setting them to $0$, but under the conditions they can be never reached by any resampling, therefore they remain $1$ always.
 
    
 
    If $|C\cup\{i_j:a_j=\text{res}\}|\geq k+1$ then all contribution has a power at least $k+1$ in $p$ since $(C,a)$ requires the prior appearance of at least $k+1$ particles. If $n\geq k+1$ than all $(C,a)$ such that $|C\cup\{i_j:a_j=\text{res}\}|\leq k$ appears exactly $n$ times, since $(C,a)$ cannot be translationally invariant. Moreover the quantity $R^{{(C,a)}}_{C(f)}(p)$ is independent of $n$ due to the conditioning that every resampling happens on a connected component of length at most $k<n$. This proves that $a_k^{(n)}$ is constant for $n\geq k+1$.
 
    
 
    Note that the heart of the proof is \eqref{eq:keyIndependceWrong}, so this is what we should double check.    
 

	
 
	The same arguments directly translate to the torus and other translationally invariant objects, so we can go higher dimensional :-) as Mario suggested.
 
	
 
	Questions:
 
	\begin{itemize}
 
		\item In view of this proof, can we better characterise $a_k^{(k+1)}$?
 
		\item Why did Mario's and Tom's simulation show that for fixed $C$ the contribution coefficients have constant sign? Is it relevant for proving \ref{it:pos}-\ref{it:geq}?
 
		\item Can we prove the conjectured formula for $a_k^{(3)}$?		
 
	\end{itemize} 
 
\end{comment}
 
        
 
\begin{comment}    
 
    \begin{definition}[Neighborhood]
 
	   	For the length-$n$ cycle we identify sites with $[n]$. 
 
	   	For a subset $S\subseteq [n]$ we define the $k$ neighborhood of $S$ as
 
	   	$N_k(S):=\cup_{s\in S} \{s-k,s-k+1,\ldots,s+k\}$ where numbers are interpreted mod $n$ and we represent the $\equiv 0$ class by $n$).
 
	\end{definition}
 
	\begin{definition}[Blocks and Gaps]
 
	   	For a configuration $C\subseteq [n]$ we call the connected components of $[n]\setminus N_1(C)$ the gaps. We denote by $m_C$ the number of gaps.
 
	   	We call a non-empty subset $B\subset C$ a block if $N_3(B)\cap C=B$ and $B$ is minimal, i.e., there is no proper subset $\emptyset\neq B'\subsetneq B$ satisfying $N_3(B')\cap C=B'$. 
 
	   	Observe that whenever $m_C\geq 2$ the number of blocks is the same as the number of gaps.  
 
    \end{definition}
 
    \begin{definition}[Crossings]
 
    	We say that a run (path) of the resampling procedure crosses $i\in[n]$ if there is ever a $0$ in $N_1({i})$ during the run.
 
    \end{definition}
 
    \begin{definition}[Enumerating gaps and mid points]
 
		Let $G_1,G_2,\ldots, G_{m_C}$ be an enumeration of the gaps respecting the cyclic ordering, and let $g_i$ be the middle element of $G_i$, if there are two middle elements we choose the smaller according to the cyclic ordering. (If $m_C=1$ and $G_1=[n]$ let $g_1=1$.)
 
		If $m_C\geq 2$ then for all $i\in[m_C]$ let $B_i$ be the block between $G_i$ and $G_{i+1}$.
 
    \end{definition}
 
    
 
    As in Mario's proof I use the observation that 
 
    \begin{align*}
 
    R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_b(p)\\
 
    &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)}(p),
 
    \end{align*}
 
    where we denote by $C\subseteq[n]$ a slot configuration, whereas $C(f)$ denotes the slots of $C$ filled with the particles described by $f$. 
 
    For $a\in\{\text{crossed},\text{not crossed}\}^m$ we also introduce the notation $R^a_{C(f)}(p):=\mathbb{E}(\#\{\text{resamples before reaching }\mathbbm{1} \text{ from } C(f)\}|\bigwedge_{j\in[m_C]}g_j \text{ is } a_j)\cdot\mathbb{P}(\bigwedge_{j\in[m_C]}g_j \text{ is } a_j)$, which we define as $0$ if the conditioning event has $0$ probability. 
 
    Since $$R_{C(f)}(p)=\sum_{a\in\{\text{crossed},\text{not crossed}\}^{m_C}}R^a_{C(f)}(p),$$ we can further rewrite the expectation as
 
    \begin{align*}
 
	    R^{(n)}(p) &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{a\in\{\text{crossed},\text{not crossed}\}^{m_C}}\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^a_{C(f)}(p).
 
    \end{align*}
 
    Suppose that $a$ contains at least two ``not crossed'', the we claim that $\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^a_{C(f)}(p)=0$. Let $j_1\neq j_2$ be two distinct indexes such that $a_{j_1}$ and $a_{j_2}$ are both saying ``not crossed''. Let $B_l:=B_{j_1}\cup B_{j_1+1}\cup\cdots\cup B_{j_2-1}$ and $B_r:=B_{j_2}\cup B_{j_2+1}\cup\cdots\cup B_{j_1-1}$ (again we interpret indexes mod $m_C$).
 
    Then we claim that for all $f\in\{0,1'\}^{|C|}$ we have 
 
    that 
 
    \begin{equation}\label{eq:keyIndependceOld}
 
		R^a_{C(f)}(p)=R^a_{B_l(f)}(p)+R^a_{B_r(f)}(p).
 
    \end{equation} 
 
    The reason is as before that the halves are independent because neither $g_{j_1}$ nor $g_{j_2}$ is crossed. One could probably similarly prove it as the grid figure shows. 
 
    From here the proof goes just as in Mario's proof:
 
    \begin{align*}
 
    \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^a_{C(f)}(p)&=
 
    \sum_{f_l\in\{0,1'\}^{|B_l|}} \sum_{f_r\in\{0,1'\}^{|B_r|}}  (-1)^{|f_l|+|f_r|}p^{|B_l|+|B_r|} \left( R^a_{B_l(f)} + R^a_{B_r(f)} \right)\\
 
    &= p^{|C|}\sum_{f_l\in\{0,1'\}^{|B_l|}} (-1)^{|f_l|} R^a_{B_l(f)} \sum_{f_r\in\{0,1'\}^{|B_r|}} (-1)^{|f_r|} \\
 
    &\quad + p^{|C|}\sum_{f_r\in\{0,1'\}^{|B_r|}} (-1)^{|f_r|} R^a_{B_r(f)} \sum_{f_l\in\{0,1'\}^{|B_l|}} (-1)^{|f_l|} \\
 
    &= 0 
 
    \end{align*}
 
    From this it follows that the only contribution comes from paths that cross all but one (or all) of the mid gaps. This then implies that it is enough to consider $\mathcal{O}(k)$ length configurations. (We define the length of a configuration $C$ as $n-\max_{j\in[m_C]}|G_j|$.)
 
    
 
    Note that the heart of the proof is \eqref{eq:keyIndependceOld}, so this is what we should double check.
 
    
 
    In fact I think the independence that we use in \eqref{eq:keyIndependceOld} can be also proven when we define a crossing as crossing the actual point, and not its $1$-neighborhood. It then would make it possible to define blocks as consecutive slacks. Also then we could actually use all points of the gaps not only the mid points. The requirement for the cancellation would be that there are ``not crossed'' labels from at least two distinct gaps. This would probably lead to the optimal $k+1$ bound giving the actual statement \ref{it:const}. 
 
    
 
    Speculation: The $n=k$ case would then probably not work because the all $0$ starting configuration is invariant under rotations.
 
    To actually go below $2k$ one needs to be careful, because there are periodic configurations that are invariant under some rotations causing double counting issues. This can be probably resolved by showing that when a pattern becomes periodic for some $n$ it actually produces periodicity times more expectation due to symmetry. But this is all just speculation.
 
\end{comment}
 

	
 
\newpage
 
\textbf{test:} Rewrite of lemma and proof
 
\begin{lemma}[Conditional independence] \label{lemma:eventindependence} \label{claim:eventindependence}
 
    Let $b=b_L\land b_R\in\{0,1\}^n$ be a state with two groups ($b_L\lor b_R = 1^n$) of zeroes that are separated by at least one site inbetween, as in Figure \ref{fig:separatedgroups}. Let $j_1$, $j_2$ be any indices inbetween the groups, such that $b_L$ lies on one side of them (left) and $b_R$ on the other (right), as shown in the figure. Furthermore, let $A_L$ be any event that depends only on the sites ``on the $b_L$ side of $j_1,j_2$'', and similar for $A_R$ (for example $\mathrm{Z}^{(i)}$ for an $i$ on the correct side). Then we have
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}^{(j_1,j_2)}, A_L, A_R)
 
        &=
 
        \mathbb{P}_{b_L}(\mathrm{NZ}^{(j_1,j_2)}, A_L)
 
        \; \cdot \;
 
        \mathbb{P}_{b_R}(\mathrm{NZ}^{(j_1,j_2)}, A_R) \\
 
        \mathbb{P}_b(A_L, A_R \mid \mathrm{NZ}^{(j_1,j_2)})
 
        &=
 
        \mathbb{P}_{b_L}(A_L \mid \mathrm{NZ}^{(j_1,j_2)})
 
        \; \cdot \;
 
        \mathbb{P}_{b_R}(A_R \mid \mathrm{NZ}^{(j_1,j_2)}) \\
 
        R_{b,\mathrm{NZ}^{(j_1,j_2)},A_L,A_R}
 
        &=
 
        R_{b_L,\mathrm{NZ}^{(j_1,j_2)},A_L}
 
        \; + \;
 
        R_{b_R,\mathrm{NZ}^{(j_1,j_2)},A_R}
 
    \end{align*}
 
    up to any order in $p$.
 
\end{lemma}
 
The lemma says that conditioned on $j_1$ and $j_2$ not being crossed, the two halves of the cycle are independent. 
 

	
 
\begin{proof}
 
    From any path $\xi\in\paths{b} \cap \mathrm{NZ}^{(j_1,j_2)}$ we can construct paths $\xi_L\in\paths{b_1}\cap \mathrm{NZ}^{(j_1,j_2)}$ and $\xi_R\in\paths{b_2}\cap\mathrm{NZ}^{(j_1,j_2)}$ as follows. Let us write the path $\xi$ as
 
    $$\xi=\left( (s_1, r_1), (s_2, r_2), ..., (s_{|\xi|}, r_{|\xi|}) \right)$$
 
    where $s_i\in [n]$ denotes the site that was resampled and $r_i\in \{0,1\}^3$ is the result of the three resampled bits. Denote by $\textsc{state}_i \in \{0,1\}^n$ the state of the system at the start of step $i$. We have
 
    \begin{align*}
 
        \P_b[\xi] &= \P(\text{pick }s_1 | \textsc{state}_1 ) \P(r_1) \P(\text{pick }s_2 | \textsc{state}_2 ) \P(r_2) \cdots \P(\text{pick }s_{|\xi|} | \textsc{state}_{|\xi|} ) \P(r_{|\xi|})
 
    \end{align*}
 
    To construct $\xi_L$ and $\xi_R$, start with empty sequences $\xi_L,\xi_R$ and for each step $(s_i,r_i)$ in $\xi$ do the following: if $s_i$ is ``on the $b_1$ side of $j_1,j_2$'' then add $(s_i,r_i)$ to $\xi_L$ and if its ``on the $b_2$ side of $j_1,j_2$'' then add $(s_i,r_i)$ to $\xi_R$.
 
    %Let the resulting paths be
 
    %\begin{align*}
 
    %    \xi_L &= \left( (z^{(1)}_{a_1}, s_{a_1}, r_{a_1}), (z^{(1)}_{a_2}, s_{a_2}, r_{a_2}), ..., (z^{(1)}_{a_{|\xi_L|}}, s_{a_{|\xi_L|}}, r_{a_{|\xi_L|}}) \right) \\
 
    %    \xi_R &= \left( (z^{(2)}_{b_1}, s_{b_1}, r_{b_1}), (z^{(2)}_{b_2}, s_{b_2}, r_{b_2}), ..., (z^{(2)}_{b_{|\xi_L|}}, s_{b_{|\xi_L|}}, r_{b_{|\xi_L|}}) \right)
 
    %\end{align*}
 
    Now $\xi_L$ is a valid (terminating) path from $b_1$ to $\mathbf{1}$, because in the original path $\xi$, all zeroes ``on the $b_1$ side'' have been resampled by resamplings ``on the $b_1$ side''. Since the sites $j_1,j_2$ inbetween never become zero, there can not be any zero ``on the $b_1$ side'' that was resampled by a resampling ``on the $b_2$ side''.
 
    Vice versa, any two paths $\xi_L\in\paths{b_1}\cap \mathrm{NZ}^{(j_1,j_2)}$ and $\xi_R\in\paths{b_2}\cap\mathrm{NZ}^{(j_1,j_2)}$ also induce a path $\xi\in\paths{b} \cap \mathrm{NZ}^{(j_1,j_2)}$ by simply interleaving the resampling positions. Note that $\xi_L,\xi_R$ actually induce $\binom{|\xi_L|+|\xi_R|}{|\xi_L|}$ paths $\xi$ because of the possible orderings of interleaving the resamplings in $\xi_L$ and $\xi_R$.
 
    For a fixed $\xi_L,\xi_R$ we will now show the following:
 
    \begin{align*}
 
        \sum_{\substack{\xi\in\paths{b} \cap \mathrm{NZ}^{(j_1,j_2)} \text{ s.t.}\\ \xi \text{ decomposes into } \xi_L,\xi_R }} \P_b[\xi] &=
 
        \sum_{\text{interleavings of }\xi_L,\xi_R} \P(\text{interleaving}) \cdot \P_{b_1}[\xi_L] \cdot \P_{b_2}[\xi_R] \\
 
        &= \P_{b_1}[\xi_L] \cdot \P_{b_2}[\xi_R]
 
    \end{align*}
 
    where both sums are over $\binom{|\xi_L|+|\xi_R|}{|\xi_L|}$ terms.
 
    This is best explained by an example. Lets consider the following fixed $\xi_L,\xi_R$ and an example interleaving where we choose steps from $\xi_R,\xi_L,\xi_L,\xi_R,\cdots$:
 
    \begin{align*}
 
        \xi_L &= \left( (s_1, r_1), (s_2, r_2), (s_3, r_3), (s_4, r_4),\cdots  \right) \\
 
        \xi_R &= \left( (s_1', r_1'), (s_2', r_2'), (s_3', r_3'), (s_4', r_4'),\cdots  \right) \\
 
        \xi   &= \left( (s_1', r_1'), (s_1, r_1), (s_2, r_2), (s_2', r_2'), \cdots \right)
 
    \end{align*}
 
    Denote by $\textsc{state}^{L}_i\in\{0,1\}^n$ the state of the system at the start of step $i$ of $\xi_L$ and similar for $\xi_R$. Denote by $\textsc{state}^{L+R}_i$ the state at the start of step $i$ for this particular interleaving $\xi$.
 
    The probability of $\xi_L$, started from $b_1$, is given by
 
    \begin{align*}
 
        \P_{b_L}[\xi_L] &= \P(\text{pick }s_1 | \textsc{state}^{L}_1 ) \P(r_1) \P(\text{pick }s_2 | \textsc{state}^{L}_2 ) \P(r_2) \cdots \P(\text{pick }s_{|\xi_L|} | \textsc{state}^{L}_{|\xi_L|} ) \P(r_{|\xi_L|})
 
    \end{align*}
 
    and similar for $\xi_R$.
 
    The following diagram illustrates all possible interleavings, and the red line corresponds to the particular interleaving $\xi$ in the example above.
 
    \begin{center}
 
        \includegraphics{diagram_paths2.pdf}
 
    \end{center}
 
    For the labels shown within the grid, define $p_{ij} = \frac{z_i}{z_i + z_j'}$.
 
    The probability of $\xi$ is given by
 
    \begin{align*}
 
        \P_b[\xi]
 
        &= 
 
        \P(\text{pick }s_1' | \textsc{state}^{L+R}_1 ) \P(r_1')
 
        \P(\text{pick }s_1  | \textsc{state}^{L+R}_2 ) \P(r_1 ) \\
 
 &\qquad\P(\text{pick }s_2  | \textsc{state}^{L+R}_3 ) \P(r_2 )
 
        \P(\text{pick }s_2' | \textsc{state}^{L+R}_4 ) \P(r_2') \\
 
        &= 
 
        \P(\text{pick right}) \P(\text{pick }s_1' | \textsc{state}^{R}_1 ) \P(r_1')
 
        \P(\text{pick left} ) \P(\text{pick }s_1  | \textsc{state}^{L}_1 ) \P(r_1 ) \\
 
 &\qquad\P(\text{pick left} ) \P(\text{pick }s_2  | \textsc{state}^{L}_2 ) \P(r_2 )
 
        \P(\text{pick right}) \P(\text{pick }s_2' | \textsc{state}^{R}_2 ) \P(r_2') \\
 
        &= \P(\text{path in grid}) \; \P_{b_1}[\xi_L] \; \P_{b_2}[\xi_R]
 
    \end{align*}
 
    In the grid we see that at every point the probabilities sum to 1, and we always reach the end, so we know the sum of all paths in the grid is 1. This proves the required equality.
 

	
 
    We obtain
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}^{(j_1,j_2)},A_1,A_2)
 
        &= \sum_{\substack{\xi\in\paths{b} \cap \\ \mathrm{NZ}^{(j_1,j_2)}\cap A_1\cap A_2}} \mathbb{P}[\xi] \\
 
        &= \sum_{\substack{\xi_L\in\paths{b_1} \cap \\ \mathrm{NZ}^{(j_1,j_2)}\cap A_1}} \;\;
 
          \sum_{\substack{\xi_R\in\paths{b_1} \cap \\ \mathrm{NZ}^{(j_1,j_2)}\cap A_2}}
 
        \mathbb{P}[\xi_L]\cdot\mathbb{P}[\xi_R] \\
 
        &=
 
        \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)},A_1)
 
        \; \cdot \;
 
        \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)},A_2).
 
    \end{align*}
 
    The second equality follows directly from $\mathbb{P}(A\mid B)=\mathbb{P}(A,B)/\mathbb{P}(B)$ and setting $A_1,A_2$ to the always-true event.
 
    For the third equality, by the same reasoning we can decompose the paths
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}^{(j_1,j_2)},A_1,A_2) R_{b,\mathrm{NZ}^{(j_1,j_2)},A_1,A_2}
 
        &\equiv \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}^{(j_1,j_2)}\cap A_1\cap A_2}} \mathbb{P}[\xi] |\xi| \\
 
        &= \sum_{\substack{\xi_L\in\paths{b_1}\\\xi_L \in \mathrm{NZ}^{(j_1,j_2)}\cap A_1}}
 
          \sum_{\substack{\xi_R\in\paths{b_2}\\\xi_R \in \mathrm{NZ}^{(j_1,j_2)}\cap A_2}}
 
        \mathbb{P}[\xi_L]\mathbb{P}[\xi_R] (|\xi_L| + |\xi_R|) \\
 
        &=
 
        \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)},A_2) \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)},A_1) R_{b_1,\mathrm{NZ}^{(j_1,j_2)},A_1} \\
 
        &\quad +
 
        \mathbb{P}_{b_1}(\mathrm{NZ}^{(j_1,j_2)},A_1) \mathbb{P}_{b_2}(\mathrm{NZ}^{(j_1,j_2)},A_2) R_{b_2,\mathrm{NZ}^{(j_1,j_2)},A_2} .
 
    \end{align*}
 
    Dividing by $\mathbb{P}_b(\mathrm{NZ}_{(j_1,j_2)},A_1,A_2)$ and using the first equality gives the desired result.
 
\end{proof}
 

	
 

	
 

	
 

	
 
	\bibliographystyle{alpha}
 
	\bibliography{Resample.bib}
 
	
 
\end{document}
0 comments (0 inline, 0 general)