Changeset - b554f1fbc443
[Not reviewed]
0 1 0
Andras Gilyen - 8 years ago 2017-09-08 17:09:07
gilyen@clayoquot.swat.cwi.nl
Incr.
1 file changed with 5 insertions and 3 deletions:
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -62,6 +62,8 @@
 
\newcommand{\paths}[1]{\mathcal{P}\left(#1\to\mathbf{1}\right)}
 
\newcommand{\start}[1]{\textsc{start}\left(#1\right)}
 
\newcommand{\initone}[1]{\textsc{InitOne}\left(#1\right)}
 
\newcommand{\patch}[1]{\textsc{Patch}\left(#1\right)}
 
\newcommand{\patches}[1]{\textsc{Patches}\left(#1\right)}
 
\newcommand{\maxgap}[1]{\mathrm{maxgap}\left(#1\right)}
 
\newcommand{\gaps}[1]{#1_{\mathrm{gaps}}}
 
\renewcommand{\P}{\mathbb{P}}
 
@@ -794,12 +796,12 @@ The following lemma considers two vertices $v,w$ that are never ``crossed'' so t
 
\end{proof}
 

	
 
	\begin{definition}[Connected patches]
 
		Let $P\subseteq V$ be a connected component of $G$. We say that $P$ is a patch of a particular run of the process if $P$ is a maximal connected component of the vertices that have ever become $0$ before termination. We denote the set of patches of a run by $\mathcal{P}$. For a patch $P$ let $P\in \mathcal{P}$ denote the event that one of the patches is equal to $P$. 
 
		Let $P\subseteq V$ be a connected component of $G$. We say that $P$ is a patch of a particular run of the process if $P$ is a maximal connected component of the vertices that have ever become $0$ before termination. We denote the set of patches of a run by $\mathcal{P}$. For a patch $P$ let $\patch{P}$ denote the event that one of the patches is equal to $P$. 
 
		In other words
 
		\begin{align*}
 
		P\in\mathcal{P} := \NZ{\overline{\partial}P} \cap \Z{P}.
 
		\patch{P} := \NZ{\overline{\partial}P} \cap \Z{P}.
 
		\end{align*}
 
		For $\mathcal{I}'\subseteq 2^{2^V}$ a set of patches we denote by $\mathcal{P}'\in \mathcal{P}$ the event that $\mathcal{P}'$ is a subset of the patches, i.e.,
 
		For a set of patches $\mathcal{P}$ 	</i>
 
		\begin{align*}
 
			\mathcal{P}'\in \mathcal{P} := \bigcup_{P\in \mathcal{P}'}\NZ{\overline{\partial}P} \cap \Z{P}.
 
		\end{align*}
0 comments (0 inline, 0 general)