Changeset - db52549f493d
[Not reviewed]
0 1 0
Tom Bannink - 8 years ago 2017-05-31 15:01:21
tom.bannink@cwi.nl
Add small note on patches
1 file changed with 1 insertions and 0 deletions:
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -370,384 +370,385 @@ The weight of such a new path is the weight of the path in the diagram, multipli
 
\]
 
Ideally we would now like to sum this expression over all possible paths $\xi_1,\xi_2$ and use $p_\mathrm{tot}:=\sum_{\xi\in\paths{b_i}} \mathbb{P}[\xi] = 1$ (which also holds up to arbitrary order in $p$). The above expression would then become $R_{b_1} + R_{b_2}$. However, not all paths in the sum would satisfy the independence condition so it seems we can't do this. We now argue that it works up to order $p^{k-1}$.
 
For all $\xi\in\paths{b_1\land b_2}$ we have that \emph{either} $\xi$ splits into two independent paths $\xi_1,\xi_2$ as above, \emph{or} it does not. In the latter case, when $\xi$ can not be split like that, we know $\mathbb{P}[\xi]$ contains a power $p^k$ or higher because there is a gap of size $k$  and the paths must have moved at least $k$ times `towards each other' (for example one path moves $m$ times to the right and the other path moves $k-m$ times to the left). So the total weight of such a combined path is at least order $p^k$. Therefore we have
 
\[
 
	R_{b_1\land b_2} = \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1| + \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_1]\mathbb{P}[\xi_2]|\xi_2| + \sum_{\mathclap{\xi\;\mathrm{dependent}}} \mathbb{P}[\xi]|\xi|.
 
\]
 
where last sum only contains only terms of order $p^{k}$ or higher. Now for the first sum, note that
 
\[
 
	\sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
    = \sum_{\xi_1\in\paths{b_1}} \sum_{\substack{\xi_2\in\paths{b_2}\\ \text{independent of }\xi_1}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
\]
 
where the sum over independent paths could be empty for certain $\xi_1$. Now we replace this last sum by a sum over \emph{all} paths $\xi_2\in\paths{b_2}$. This will change the sum but only for terms where $\xi_1,\xi_2$ are dependent. For those terms we already know that $\mathbb{P}[\xi_1]\mathbb{P}[\xi_2]$ contains a factor $p^k$ and hence we have 
 
\begin{align*}
 
    \sum_{\mathclap{\substack{\xi_{1,2}\in\paths{b_{1,2}}\\ \mathrm{independent}}}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1|
 
    &= \sum_{\xi_1\in\paths{b_1}} \sum_{\xi_2\in\paths{b_2}} \mathbb{P}[\xi_2]\mathbb{P}[\xi_1]|\xi_1| + \mathcal{O}(p^k) \\
 
    &= \sum_{\xi_1\in\paths{b_1}} \mathbb{P}[\xi_1]|\xi_1| + \mathcal{O}(p^k) \\
 
    &= R_{b_1} + \mathcal{O}(p^k)
 
\end{align*}
 
we can do the same with the second term and this proves the claim.
 
\end{proof}
 

	
 
~\\
 
\textbf{Proof of claim \ref{claim:weakcancel}}: We can assume $C$ consists of a group on the left with $l$ slots and a group on the right with $r$ slots (so $r+l=|C|$), with a gap of size $k=\mathrm{gap}(C)$ between these groups. Then on the left we have strings in $\{0,1'\}^l$ as possibilities and on the right we have strings in $\{0,1'\}^r$. The combined configuration can be described by strings $f=(a,b)\in\{0,1'\}^{l+r}$. The initial probability of such a state $C(a,b)$ is $\rho_{C(a,b)} = (-1)^{|a|+|b|} p^{r+l}$ and by claim \ref{claim:expectationsum} we know $R_{C(a,b)} = R_{C(a)} + R_{C(b)} + \mathcal{O}(p^k)$ where $C(a)$ indicates that only the left slots have been filled by $a$ and the other slots are filled with $1$s. The total contribution of these configurations is therefore
 
\begin{align*}
 
    \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)}
 
    &= \sum_{a\in\{0,1'\}^l} \sum_{b\in\{0,1'\}^r} (-1)^{|a|+|b|}p^{r+l} \left( R_{C(a)} + R_{C(b)} + \mathcal{O}(p^k) \right) \\
 
    &=\;\;\; p^{r+l}\sum_{a\in\{0,1'\}^l} (-1)^{|a|} R_{C(a)} \sum_{b\in\{0,1'\}^r} (-1)^{|b|} \\
 
    &\quad + p^{r+l}\sum_{b\in\{0,1'\}^r} (-1)^{|b|} R_{C(b)} \sum_{a\in\{0,1'\}^l} (-1)^{|a|}
 
        + \mathcal{O}(p^{r+l+k})\\
 
    &= 0 + \mathcal{O}(p^{|C|+k})
 
\end{align*}
 
where we used the identity $\sum_{a\in\{0,1\}^l} (-1)^{|a|} = 0$.
 

	
 
~
 

	
 
It is useful to introduce some new notation: for any event $A$ (where an event is a set of paths), define
 
\begin{align*}
 
    \mathbb{P}_b(A) &= \mathbb{P}(A \;|\; \text{start in }b) \\
 
    R_{b,A} &= \mathbb{E}( \#resamples \;|\; A\;,\; \text{start in }b)
 
\end{align*}
 
Denote by $\mathrm{Z}_j$ the event that site $j$ becomes zero at any point in time before the Markov Chain terminates. Denote the complement by $\mathrm{NZ}_j$, i.e. the event that site $j$ does \emph{not} become zero before it terminates.
 

	
 
The proof of claim \ref{claim:expectationsum} also proves the following claim
 
\begin{claim}[Conditional independence] \label{claim:eventindependence}
 
    As in \ref{claim:expectationsum}, let $b=b_1\land b_2\in\{0,1\}^n$ be a state with two groups ($b_1\lor b_2 = 1^n$) of zeroes. Let $j_1$, $j_2$ be indices `inbetween' the groups (or only one index in case of the infinite line). Then we have
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2})
 
        &=
 
        \mathbb{P}_{b_1}(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2})
 
        \; \cdot \;
 
        \mathbb{P}_{b_2}(\mathrm{NZ}_{j_1} , \mathrm{NZ}_{j_2}) \\
 
        R_{b,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2}}
 
        &=
 
        R_{b_1,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2}}
 
        \; + \;
 
        R_{b_2,\mathrm{NZ}_{j_1},\mathrm{NZ}_{j_2}}
 
    \end{align*}
 
    up to any order in $p$.
 
\end{claim}
 
\begin{proof}
 
    For clarity we do the proof for the infinite line, when there is only one index. Simply replace $\mathrm{NZ}_j$ by $\mathrm{NZ}_{j_1}\cap\mathrm{NZ}_{j_2}$ for the case of the circle.
 

	
 
    Note that any path $\xi\in\paths{b} \cap \mathrm{NZ}_j$ can be split into paths $\xi_1\in\paths{b_1}\cap \mathrm{NZ}_j$ and $\xi_2\in\paths{b_2}\cap\mathrm{NZ}_j$ and by the same reasoning as in the proof of claim \ref{claim:expectationsum}, we obtain
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}_j)
 
        = \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}_j}} \mathbb{P}[\xi]
 
        &= \sum_{\substack{\xi_1\in\paths{b_1}\\\xi_1 \in \mathrm{NZ}_j}}
 
          \sum_{\substack{\xi_2\in\paths{b_1}\\\xi_2 \in \mathrm{NZ}_j}}
 
        \mathbb{P}[\xi_1]\cdot\mathbb{P}[\xi_2] \\
 
        &=
 
        \mathbb{P}_{b_1}(\mathrm{NZ}_j)
 
        \; \cdot \;
 
        \mathbb{P}_{b_2}(\mathrm{NZ}_j).
 
    \end{align*}
 
    For the second equality, note that again by the same reasoning as in the proof of claim \ref{claim:expectationsum} we have
 
    \begin{align*}
 
        \mathbb{P}_b(\mathrm{NZ}_j) R_{b,\mathrm{NZ}_j}
 
        := \sum_{\substack{\xi\in\paths{b}\\\xi \in \mathrm{NZ}_j}} \mathbb{P}[\xi] |\xi| 
 
        &= \sum_{\substack{\xi_1\in\paths{b_1}\\\xi_1 \in \mathrm{NZ}_j}}
 
          \sum_{\substack{\xi_2\in\paths{b_2}\\\xi_2 \in \mathrm{NZ}_j}}
 
        \mathbb{P}[\xi_1]\mathbb{P}[\xi_2] (|\xi_1| + |\xi_2|) \\
 
        &=
 
        \mathbb{P}_{b_2}(\mathrm{NZ}_j) \mathbb{P}_{b_1}(\mathrm{NZ}_j) R_{b_1,\mathrm{NZ}_j}
 
        \; + \;
 
        \mathbb{P}_{b_1}(\mathrm{NZ}_j) \mathbb{P}_{b_2}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j} .
 
    \end{align*}
 
    Dividing by $\mathbb{P}_b(\mathrm{NZ}_j)$ and using the first equality gives the desired result.
 
\end{proof}
 

	
 
~
 

	
 
TEST: Although a proof of claim \ref{claim:expectationsum} was already given, I'm trying to prove it in an alternate way using claim \ref{claim:eventindependence}.
 

	
 
~
 

	
 
Assume that $b_1$ ranges up to site $0$, the gap ranges from sites $1,...,k$ and $b_2$ ranges from site $k+1$ and onwards. For $j=1,...,k$ define the ``partial-zeros'' event $\mathrm{PZ}_j = \mathrm{Z}_1 \cap \mathrm{Z}_2 \cap ... \cap \mathrm{Z}_{j-1} \cap \mathrm{NZ}_j$ i.e. the first $j-1$ sites of the gap become zero and site $j$ does not become zero. Also define the ``all-zeros'' event $\mathrm{AZ} = \mathrm{Z}_1 \cap ... \cap \mathrm{Z}_k$, where all sites of the gap become zero. Note that these events partition the space, so we have for all $b$ that $\sum_{j=1}^k \mathbb{P}_b(\mathrm{PZ}_j) = 1 - \mathbb{P}_b(\mathrm{AZ}) = 1 - \mathcal{O}(p^k)$.
 

	
 
~
 

	
 
Furthermore, if site $j$ becomes zero when starting from $b_1$ it means all sites to the left of $j$ become zero as well. Similarly, from $b_2$ it implies all the sites to the right of $j$ become zero.
 
Because of that, we have
 
\begin{align*}
 
    \mathbb{P}_{b_1}(\mathrm{PZ}_j) &= \mathbb{P}_{b_1}(\mathrm{Z}_{j-1} \cap \mathrm{NZ}_j) = \mathcal{O}(p^{j-1}) \\
 
    \mathbb{P}_{b_2}(\mathrm{NZ}_j) &= 1 - \mathbb{P}_{b_2}(\mathrm{Z}_j) = 1 - \mathcal{O}(p^{k-j+1})
 
\end{align*}
 
Following the proof of claim \ref{claim:eventindependence} we also have
 
\begin{align*}
 
    \mathbb{P}_b(\mathrm{PZ}_{j})
 
    &=
 
    \mathbb{P}_{b_1}(\mathrm{PZ}_{j})
 
    \; \cdot \;
 
    \mathbb{P}_{b_2}(\mathrm{NZ}_{j}) \\
 
    R_{b,\mathrm{PZ}_{j}}
 
    &=
 
    R_{b_1,\mathrm{PZ}_{j}}
 
    \; + \;
 
    R_{b_2,\mathrm{NZ}_{j}}
 
\end{align*}
 

	
 

	
 
Now observe that
 
\begin{align*}
 
    R_b &= \sum_{j=1}^k \mathbb{P}_b(\mathrm{PZ}_j) R_{b,\mathrm{PZ}_j} + \mathbb{P}_b(\mathrm{AZ}) R_{b,\mathrm{AZ}} \\
 
        &= \sum_{j=1}^k \mathbb{P}_{b_2}(\mathrm{NZ}_j)\mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
 
        + \mathcal{O}(p^k) \\
 
        &= \sum_{j=1}^k \mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        - \sum_{j=1}^k \mathbb{P}_{b_2}(\mathrm{Z}_j)\mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
 
        + \mathcal{O}(p^k) \\
 
        &= \sum_{j=1}^k \mathbb{P}_{b_{1}}(\mathrm{PZ}_j) R_{b_1,\mathrm{PZ}_j}
 
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
 
        + \mathcal{O}(p^k) \\
 
        &= R_{b_1}
 
        + \sum_{j=1}^k \mathbb{P}_{b_1}(\mathrm{PZ}_j)\mathbb{P}_{b_{2}}(\mathrm{NZ}_j) R_{b_2,\mathrm{NZ}_j}
 
        + \mathcal{O}(p^k) \\
 
        &\overset{???}{=} R_{b_1} + R_{b_2} + \mathcal{O}(p^k)
 
\end{align*}
 

	
 
\newpage
 
    \subsection{Attempt to prove the linear bound \ref{it:const}}
 
    
 
Consider the chain (instead of the cycle) for simplicity with vertices identified by $\mathbb{Z}$.
 
\begin{definition}[Starting state dependent probability distribution.]
 
	Let $I\subset\mathbb{Z}$ be a finite set of vertices.
 
	Let $b_I$ be the initial state where everything is $1$, apart from the vertices corresponding to $I$, which are set $0$. For an event $A$ representing a subset of all possible resample sequences let $P_I(A)$ denote the probability of seeing a resample sequence from $A$ when the whole procedure started in state $b_I$. 
 
\end{definition}
 
\begin{definition}[Vertex visiting resamplings]\label{def:visitingResamplings}
 
	Let $V^{(i)}$ be the event corresponding to ``Vertex $i$ gets resampled to $0$ before termination''.
 
\end{definition}
 

	
 
The intuition of the following lemma is that the far right can only affect the zero vertex if there is an interaction chain forming, which means that every vertex should get resampled to $0$ at least once.
 
\begin{lemma}\label{lemma:probIndep}
 
	Suppose we have a finite set $I\subset\mathbb{N}_+$ of vertices.
 
	Let $I_{\max}:=\max(I)$ and $I':=I\setminus\{I_{\max}\}$, and similarly let $I_{\min}:=\min(I)$.
 
	Then $P_{I}(V^{(0)})=P_{I'}(V^{(0)}) + O(p^{I_{\max}+1-|I|})$.
 
\end{lemma}
 
\begin{proof}
 
	The proof uses induction on $|I|$. For $|I|=1$ the statement is easy, since every resample sequence that resamples the $0$ vertex must produce at least $I_{\max}$ number of $0$-s during the resamplings.
 
	
 
	Induction step: For an event $A$ and $k>0$ let us denote by $A_k=A\cap$``Each vertex in $0,1,2,\ldots, k-1$ gets $0$ before termination (either by resampling or initialisation), but not $k$''. Observe that $V^{(0)}=\dot{\bigcup}_{k=1}^{\infty}V^{(0)}_k$.
 
	Let $I_{<k}:=I\cap[k-1]$ and similarly $I_{>k}:=I\setminus[k]$, finally let $I_{><}:=\{I_{\min}+1,I_{\max}-1]\}\setminus I$. Suppose we proved the claim up to $|I|-1$, then the induction step can be shown by
 
	\begin{align*}
 
		P_{I}(V^{(0)})
 
		&=\sum_{k=1}^{\infty}P(V^{(0)}_k)
 
		=\sum_{k\in \mathbb{N}\setminus I}P(V^{(0)}_k)\\
 
		&=\sum_{k\in\mathbb{N}\setminus I}P_{I_{<k}}(V^{(0)}_k)\cdot P_{I_{>k}}(\overline{V^{(k)}}) \tag{by Claim~\ref{claim:eventindependence}}\\
 
		&=\sum_{k\in I_{><}}P_{I_{<k}}(V^{(0)}_k)\cdot P_{I_{>k}}(\overline{V^{(k)}})+\mathcal{O}(p^{I_{\max}+1-|I|})
 
		\tag{$k<I_{\min}\Rightarrow P_{I_{<k}}(V^{(0)}_k)=0$}\\
 
		&=\sum_{k\in I_{><}}P_{I'_{<k}}(V^{(0)}_k)\cdot P_{I_{>k}}(\overline{V^{(k)}})+\mathcal{O}(p^{I_{\max}+1-|I|})	
 
		\tag{$k< I_{\max}\Rightarrow I_{<k}=I'_{<k}$}\\
 
		&=\sum_{k\in I_{><}}P_{I'_{<k}}(V^{(0)}_k)\cdot
 
		\left(P_{I'_{>k}}(\overline{V^{(k)}})+\mathcal{O}(p^{I_{\max}-k+1-|I_{>k}|})\right) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{by induction, since for $k>I_{\min}$ we have $|I_{<k}|<|I|$}\\
 
		&=\sum_{k\in I_{><}}P_{I'_{<k}}(V^{(0)}_k)\cdot
 
		P_{I'_{>k}}(\overline{V^{(k)}}) +\mathcal{O}(p^{I_{\max}+1-|I|})	
 
		\tag{as $P_{I'_{<k}}(V^{(0)}_k)=\mathcal{O}(p^{k-|I'_{<k}|})$}\\
 
		&=\sum_{k\in\mathbb{N}\setminus I}P_{I'_{<k}}(V^{(0)}_k)\cdot
 
		P_{I'_{>k}}(\overline{V^{(k)}}) +\mathcal{O}(p^{I_{\max}+1-|I|})\\
 
		&=\sum_{k\in\mathbb{N}\setminus I'}P_{I'_{<k}}(V^{(0)}_k)\cdot
 
		P_{I'_{>k}}(\overline{V^{(k)}}) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{$k=I_{\max}\Rightarrow P_{I'_{<k}}(V^{(0)}_k)=\mathcal{O}(p^{I_{\max}-|I'|})=\mathcal{O}(p^{I_{\max}+1-|I|})$}\\
 
		&=P_{I'}(V^{(0)}) +\mathcal{O}(p^{I_{\max}+1-|I|})	\tag{analogously to the beginning}			
 
	\end{align*}
 
\end{proof}
 

	
 
	The main insight that Lemma~\ref{lemma:probIndep} gives is that if we separate the slots to two halves, in order to see the cancellation of the contribution of the expected resamples on the right, we can simply pair up the left configurations by the particle filling the leftmost slot. And similarly for cancelling the left expectations we pair up right configurations based on the rightmost filling. 
 
	
 
	Also this claim finally ``sees'' how many empty places are between slots. These properties make it possible to use this lemma to prove the sought linear bound. We show it for the infinite chain, but with a little care it should also translate to the circle.
 

	
 
\begin{definition}[Connected patches]
 
	Let $\mathcal{P}\subset 2^{\mathbb{Z}}$ be a finite system of finite subsets of $\mathbb{Z}$. We say that the patch set of a resample sequence is $\mathcal{P}$,
 
	if the connected components of the vertices that have ever become $0$ are exactly the elements of $\mathcal{P}$. We denote by $A^{(\mathcal{P})}$ the event that the set of patches is $\mathcal{P}$. For a patch $P$ let $A^{(P)}=\bigcup_{\mathcal{P}:P\in \mathcal{P}}A^{(\mathcal{P})}$.
 
\end{definition} 
 
Note by Tom: So $A^{(\mathcal{P})}$ is the event that the set of all patches is \emph{exactly} $\mathcal{P}$ whereas $A^{(P)}$ is the event that one of the patches is equal to $P$ but there can be other patches as well.
 

	
 
\begin{definition}[Conditional expectations]
 
	Let $S\subset\mathbb{Z}$ be a finite slot configuration, and for $f\in\{0,1'\}^{|S|}$ let $I:=S(f)$ be the set of vertices filled with particles. 
 
	Then we define
 
	$$R_I:=\mathbb{E}[\#\{\text{resamplings when started from inital state }I\}].$$
 
	For a patch set $\mathcal{P}$ and some $P\in\mathcal{P}$ we define
 
	$$R^{(\mathcal{P})}_I:=\mathbb{E}[\#\{\text{resamplings when started from inital state }I\}|A^{(\mathcal{P})}]$$	
 
	and 
 
	$$R^{(P,\mathcal{P})}_I:=\mathbb{E}[\#\{\text{resamplings inside }P\text{ when started from inital state }I\}|A^{(\mathcal{P})}]$$		
 
	finally
 
	$$R^{(P)}_I:=\mathbb{E}[\#\{\text{resamplings inside }P\text{ when started from inital state }I\}|A^{(P)}].$$	
 
\end{definition} 
 

	
 
    Similarly to Mario's proof I use the observation that 
 
    \begin{align*}
 
    R^{(n)} &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_{\bar{b}}(p)\\
 
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}} \rho_{S(f)} R_{S(f)}\\
 
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}\sum_{\mathcal{P}\text{ patches}} \rho_{S(f)} R^{(\mathcal{P})}_{S(f)}\mathbb{P}_{S(f)}(A^{(\mathcal{P})})\\
 
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}
 
    \sum_{\mathcal{P}\text{ patches}}\sum_{P\in\mathcal{P}} \rho_{S(f)} R^{(P,\mathcal{P})}_{S(f)}\mathbb{P}_{S(f)}(A^{\mathcal{P}})\\
 
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}
 
    \sum_{\mathcal{P}\text{ patches}}\sum_{P\in\mathcal{P}} \rho_{S(f)} R^{(P)}_{S(f)\cap P}\mathbb{P}_{S(f)}(A^{\mathcal{P}}) \tag{by Claim~\ref{claim:eventindependence}}\\ 
 
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{f\in\{0,1'\}^{|S|}}
 
    \sum_{P\text{ patch}} \rho_{S(f)} R^{(P)}_{S(f)\cap P}\sum_{\mathcal{P}:P\in\mathcal{P}}\mathbb{P}_{S(f)}(A^{\mathcal{P}})\\     
 
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f\in\{0,1'\}^{|S|}}
 
     \rho_{S(f)} R^{(P)}_{S(f)\cap P}\mathbb{P}_{S(f)}(A^{(P)}) \tag{by definition}\\        
 
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f\in\{0,1'\}^{|S|}}
 
    \rho_{S(f)} R^{(P)}_{S(f)\cap P}\mathbb{P}_{S(f)\cap P}(A^{(P)})\mathbb{P}_{S(f)\cap \overline{P}}(\overline{V^{(P_{\min}-1)}}\cap\overline{V^{(P_{\max}+1)}}) \tag{remember Definition~\ref{def:visitingResamplings} and use Claim~\ref{claim:eventindependence}}\\    
 
    &= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f_P\in\{0,1'\}^{|S\cap P|}}
 
    \rho_{S(f_P)}  R^{(P)}_{S(f_P)}\mathbb{P}_{S(f_P)}(A^{(P)})
 
    \sum_{f_{\overline{P}}\in\{0,1'\}^{|S\cap \overline{P}|}}\rho_{S(f_{\overline{P}})}\mathbb{P}_{S(f_{\overline{P}})}(\overline{V^{(P_{\min}-1)}}\cap\overline{V^{(P_{\max}+1)}}) \\   
 
	&= \frac{1}{n}\sum_{S\subseteq [n]}\sum_{P\text{ patch}}\sum_{f_P\in\{0,1'\}^{|S\cap P|}}
 
	\rho_{S(f_P)}
 
	\sum_{f_{\overline{P}}\in\{0,1'\}^{|S\cap \overline{P}|}}\rho_{S(f_{\overline{P}})}\mathcal{O}(p^{|S_{><}|}) \\             
 
	&= \frac{1}{n}\sum_{S\subseteq [n]}\mathcal{O}(p^{|S|+|S_{><}|}).
 
    \end{align*}
 
   	
 
   	The penultimate inequality can be seen by case separation.
 
   	If $S_{><}\subseteq P$ then already $\mathbb{P}_{S(f_P)}(A^{(P)})=\mathcal{O}(p^{|S_{><}|})$.
 
   	Otherwise if all elements of $S_{><}\setminus P$ are larger than $P_{\max}$ then we view the last summation as $\sum_{f'_{\overline{P}}\in\{0,1'\}^{|S\cap \overline{P}\setminus\{S_{\max}\}|}}\sum_{f''_{\overline{P}}\in\{0,1'\}^{1}}$ and use Lemma~\ref{lemma:probIndep} to conclude the cancellations pairwise regarding the filling of $S_{\max}$, i.e., the value of $f''_{\overline{P}}$. We proceed similarly when 
 
   	all elements of $S_{><}\setminus P$ are smaller than $P_{\min}$. In the last case we again proceed similarly, but now the cancellations will come from the interplay of $4$ fillings, corresponding to the possible filling of $S_{\min}$ and $S_{\max}$ simultaneously.
 
   	   
 
	I think the same arguments would directly translate to the torus and other translationally invariant objects, so we could go higher dimensional as Mario suggested. Then one would need to replace $|S_{><}|$ by the minimal number $k$ such that there is a $C$ set for which $S\cup C$ is connected.
 
    
 
    Questions:
 
    \begin{itemize}
 
    	\item Is this proof finally flawless?
 
    	\item In view of this proof, can we better characterise $a_k^{(k+1)}$?
 
    	\item Why did Mario's and Tom's simulation show that for fixed $C$ the contribution coefficients have constant sign? Is it relevant for proving \ref{it:pos}-\ref{it:geq}?
 
    	\item Can we prove the conjectured formula for $a_k^{(3)}$?		
 
    \end{itemize} 
 
    
 
\begin{comment}
 
    \subsection{Sketch of the (false) proof of the linear bound \ref{it:const}}
 
    Let us interpret $[n]$ as the vertices of a length-$n$ cycle, and interpret operations on vertices mod $n$ s.t. $n+1\equiv 1$ and $1-1\equiv n$.
 
    %\begin{definition}[Resample sequences]
 
    %	A sequence of indices $(r_\ell)=(r_1,r_2,\ldots,r_k)\in[n]^k$ is called resample sequence if our procedure performs $k$ consequtive resampling, where the first resampling of the procedure resamples around the mid point $r_1$ the second around $r_2$ and so on. Let $RS(k)$ the denote the set of length $k$ resample sequences, and let $RS=\cup_{k\in\mathbb{N}}RS(k)$.
 
    %\end{definition}
 
    %\begin{definition}[Constrained resample sequence]\label{def:constrainedRes}
 
    %	Let $C\subseteq[n]$ denote a slot configuration, and let $a\in\{\text{res},\neg\text{res}\}^{n-|C|}$, where the elements correspond to labels ``resampled" vs. ``not resampled" respectively. 
 
    %	For $j\in[n-|C|]$ let $i_j$ denote the $j$-th index in $[n]\setminus C$.
 
    %	We define the set $A^{(C,a)}\subseteq RS$ as the set of resample sequences $(r_\ell)$ such that for all $j$ which has $a_j=\text{res}$ we have that $i_j$ appears in $(r_\ell)$ but for $j'$-s which have $a_{j'}=\neg\text{res}$ we have that $i_{j'}$ never appears in $(r_\ell)$. 
 
    %\end{definition}    
 
    \begin{definition}[Conditional expected number of resamples]
 
    	For a slot configuration $C\subseteq[n]$ and $a\in\{\!\text{ever},\text{ never}\}^{n-|C|}$ we define the event $A^{(C,a)}:=\bigwedge_{j\in[n-|C|]}\{i_j\text{ has }a_j\text{ become }0\text{ before reaching }\mathbf{1}\}$,
 
    	where $i_j$ is the $j$-th vertex of $[n]\setminus C$.
 
    	Then we also define
 
    	$$R^{(C,a)}_b:=\mathbb{E}[\#\{\text{resamplings when started from inital state }b\}|A^{(C,a)}].$$
 
    \end{definition}     
 
    
 
    As in Mario's proof I use the observation that 
 
    \begin{align*}
 
    R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_{\bar{b}}(p)\\
 
    &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)}(p)\\
 
    &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}}\sum_{a\in\{\!\text{ever},\text{ never}\}^{n-|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)P_{C(f)}(A^{(C,a)})\\
 
    &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{a\in\{\!\text{ever},\text{ never}\}^{n-|C|}} \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)P_{C(f)}(A^{(C,a)}), 
 
    \end{align*}
 
    where we denote by $C\subseteq[n]$ a slot configuration, whereas $C(f)$ denotes the slots of $C$ filled with the particles described by $f$, while all other location in $[n]\setminus C$ are set to $1$. 
 
    When we write $R_{C(f)}$ we mean $R_{C(\bar{f})}$, i.e., replace $1'$-s with $1$-s. Since the notation is already heavy we dropped the bar from $f$, as it is clear from the context. Finally by $P_{C(f)}(A^{(C,a)})$ we denote the probability that the event $A^{(C,a)}$ holds.
 
    
 
    As in Definition for $j\in[n-|C|]$ let $i_j$ denote the $j$-th index in $[n]\setminus C$.
 
    Suppose that $a$ is such that there are two indices $j_1\neq j_2$ such that 
 
    $a_{j_1}=\text{never}=a_{j_2}$, moreover the sets $\{i_{j_1}+1,\ldots, i_{j_2}-1\}$ and $\{i_{j_2}+1,\ldots, i_{j_1}-1\}$ partition $C$ non-trivially, and we denote by $C_l$,$C_r$ the corresponding partitions. 
 
    I wanted to prove that
 
    \begin{equation}\label{eq:conditionalCancellation}
 
		\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)=0,
 
    \end{equation}    
 
    based on the observation that for all $f\in\{0,1'\}^{|C|}$ we have 
 
    that 
 
    \begin{equation}\label{eq:keyIndependce}
 
    R^{{(C,a)}}_{C(f)}(p)=R^{{(C_l,a_l)}}_{C_l(f_l)}(p)+R^{{(C_r,a_r)}}_{C_r(f_r)}(p),
 
    \end{equation}
 
    where $f_l\in\{0,1'\}^{|C_l|}$ is defined as taking only the indices (and values) of $f$ corresponding to vertices of $C_l$, also $a_l\in[n-|C_l|]$ is defined such that $a$ and $a_l$ agree on vertices where $a$ is defined, and on the vertices where $a$ is not defined, i.e., the vertices of $C_r$ we define $a_l$ to contain ``never". We define things analogously for $f_r$ and $a_r$. 
 
    
 
    The reason why \eqref{eq:keyIndependce} holds is that as before the two halves of the cycle are conditionally independent because neither $i_{j_1}$ nor $i_{j_2}$ can become $0$. To be more precise each resample sequence $\left(C(f)\rightarrow \mathbf{1} \right)\in A^{(C,a)}$ can be uniquely decomposed to resample sequences $\left(C_l(f_l)\rightarrow \mathbf{1}\right)\in A^{(C_l,a_l)}$ and $\left(C_r(f_r)\rightarrow \mathbf{1}\right)\in A^{(C_r,a_r)}$. The sum of probabilities of the set of resample sequences $\{r\}$ which have decomposition $(r_l,r_r)$ have probability which is the product of the probabilities of $r_l$ and $r_r$ as shown in the proof of Claim~\ref{claim:expectationsum}. This proves that the set of all resample sequences $\left(C(f)\rightarrow \mathbf{1}\right)\in A^{(C,a)}$ for our purposes can be viewed as a product set with product probability distribution. Therefore the halves can be treated independently and so the expectation values just add up. 
 
    
 
    From here I wanted to mimic Mario's proof:
 
    \begin{align*}
 
    \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)&=
 
    \sum_{f_l\in\{0,1'\}^{|C_l|}} \sum_{f_r\in\{0,1'\}^{|C_r|}}  (-1)^{|f_l|+|f_r|}p^{|C_l|+|C_r|} \left( R^{{(C_l,a_l)}}_{C_l(f_l)}(p) + R^{{(C_r,a_r)}}_{C_r(f_l)}(p) \right)\\
 
    &= p^{|C|}\sum_{f_l\in\{0,1'\}^{|C_l|}} (-1)^{|f_l|} R^{{(C_l,a_l)}}_{C_l(f_l)}(p) \sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_r|} \\
 
    &\quad + p^{|C|}\sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_r|} R^{{(C_r,a_r)}}_{C_r(f_r)}(p) \sum_{f_l\in\{0,1'\}^{|C_l|}} (-1)^{|f_l|} \\
 
    &= 0.
 
    \end{align*}
 
    The nasty issue which I did not realise that the missing term $P_{C(f)}(A^{(C,a)})$ is non-constant: even though the event $A^{(C,a)}$ is independent of $f$ the probability $P_{C(f)}(A^{(C,a)})=P_{C(f_l)}(A^{(C_l,a_l)})\cdot P_{C(f_r)}(A^{(C_r,a_r)})$ is not and so the above breaks down.
 
    
 
    Observe that if \eqref{eq:conditionalCancellation} would hold for configurations that cut the slot configuration to two halves it would imply that the only non-zero contribution comes from pairs $(C,a)$ such that $C\cup\{i_j:a_j=\text{ever}\}$ is connected. This is because if this set is not connected, then either we can cut $C$ to two halves non-trivially along ``never" vertices, or there is an island of $\text{ever}$ vertices separated from any slots, and therefore from any $0$-s. This latter case has zero contribution since we cannot set these indices to $0$, without reaching them by some resamplings, and thereby building a path of $0$-s leading there.
 
    
 
    If $|C\cup\{i_j:a_j=\text{ever}\}|\geq k+1$ then all contribution has a power at least $k+1$ in $p$ since $(C,a)$ requires the prior appearance of at least $k+1$ particles. If $n\geq k+1$ than all $(C,a)$ such that $|C\cup\{i_j:a_j=\text{ever}\}|\leq k$ appears exactly $n$ times, since $(C,a)$ cannot be translationally invariant. Moreover the quantity $R^{{(C,a)}}_{C(f)}(p)$ is independent of $n$ due to the conditioning that every resampling happens on a connected component of length at most $k<n$. This would prove that $a_k^{(n)}$ is constant for $n\geq k+1$. The same arguments would directly translate to the torus and other translationally invariant objects, so we could go higher dimensional as Mario suggested.
 
    
 
    Questions:
 
    \begin{itemize}
 
    	\item Is it possible to somehow fix this proof?
 
    	\item In view of this (false) proof, can we better characterise $a_k^{(k+1)}$?
 
    	\item Why did Mario's and Tom's simulation show that for fixed $C$ the contribution coefficients have constant sign? Is it relevant for proving \ref{it:pos}-\ref{it:geq}?
 
    	\item Can we prove the conjectured formula for $a_k^{(3)}$?		
 
    \end{itemize} 
 

	
 
\begin{comment}
 
    \subsection{Sketch of the proof of the linear bound \ref{it:const}}
 
    Let us interpret $[n]$ as the vertices of a length-$n$ cycle, and interpret operations on vertices mod $n$ s.t. $n+1\equiv 1$ and $1-1\equiv n$.
 
    \begin{definition}[Resample sequences]
 
		A sequence of indices $(r_\ell)=(r_1,r_2,\ldots,r_k)\in[n]^k$ is called resample sequence if our procedure performs $k$ consequtive resampling, where the first resampling of the procedure resamples around the mid point $r_1$ the second around $r_2$ and so on. Let $RS(k)$ the denote the set of length $k$ resample sequences, and let $RS=\cup_{k\in\mathbb{N}}RS(k)$.
 
    \end{definition}
 
    \begin{definition}[Constrained resample sequence]\label{def:constrainedRes}
 
    	Let $C\subseteq[n]$ denote a slot configuration, and let $a\in\{\text{res},\neg\text{res}\}^{n-|C|}$, where the elements correspond to labels ``resampled" vs. ``not resampled" respectively. 
 
    	For $j\in[n-|C|]$ let $i_j$ denote the $j$-th index in $[n]\setminus C$.
 
		We define the set $A^{(C,a)}\subseteq RS$ as the set of resample sequences $(r_\ell)$ such that for all $j$ which has $a_j=\text{res}$ we have that $i_j$ appears in $(r_\ell)$ but for $j'$-s which have $a_{j'}=\neg\text{res}$ we have that $i_{j'}$ never appears in $(r_\ell)$. 
 
    \end{definition}    
 
    \begin{definition}[Expected number of resamples]
 
		For $b\in\{0,1\}^n$ we define 
 
		$$R_b=\mathbb{E}[\#\{\text{resamplings when started from inital state }b\}],$$
 
		and for $(C,a)$ as in the previous definition we also define
 
		$$R^{(C,a)}_b=\mathbb{E}[\#\{\text{resamplings }\in A^{(C,a)} \text{ when started from inital state }b\}].$$
 
		Here we mean by the latter that after each resampling we check whether the sequence of resamplings so far is in $A^{(C,a)}$, if yes we count it, otherwise we do not count.
 
    \end{definition}     
 
    
 
    As in Mario's proof I use the observation that 
 
    \begin{align*}
 
    R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1,1'\}^{n}} \rho_b \; R_{\bar{b}}(p)\\
 
    &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R_{C(f)}(p)\\
 
    &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{f\in\{0,1'\}^{|C|}}\sum_{a\in\{\text{res},\neg\text{res}\}^{n-|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)\\
 
    &= \frac{1}{n}\sum_{C\subseteq [n]}\sum_{a\in\{\text{res},\neg\text{res}\}^{n-|C|}} \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p), 
 
    \end{align*}
 
    where we denote by $C\subseteq[n]$ a slot configuration, whereas $C(f)$ denotes the slots of $C$ filled with the particles described by $f$, while all other location in $[n]\setminus C$ are set to $1$. 
 
	When we write $R_{C(f)}$ we mean $R_{C(\bar{f})}$, i.e., replace $1'$-s with $1$-s. Since the notation is already heavy we dropped the bar from $f$, as it is clear from the context.
 
    
 
    As in Definition~\ref{def:constrainedRes} for $j\in[n-|C|]$ let $i_j$ denote the $j$-th index in $[n]\setminus C$.
 
    Suppose that $a$ is such that there are two indices $j_1\neq j_2$ such that 
 
    $a_{j_1}=\neg\text{res}=a_{j_2}$, moreover the sets $\{i_{j_1}+1,\ldots, i_{j_2}-1\}$ and $\{i_{j_2}+1,\ldots, i_{j_1}-1\}$ partition $C$ non-trivially, and we denote by $C_l$,$C_r$ the corresponding partitions. 
 
    We claim that 
 
    $$\sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)=0.$$
 
    
 
	This is based on the observation that that for all $f\in\{0,1'\}^{|C|}$ we have 
 
    that 
 
    \begin{equation}\label{eq:keyIndependceWrong}
 
    R^{{(C,a)}}_{C(f)}(p)=R^{{(C_l,a_l)}}_{C_l(f_l)}(p)+R^{{(C_r,a_r)}}_{C_r(f_r)}(p),
 
    \end{equation}
 
    where $f_l\in\{0,1'\}^{|C_l|}$ is defined as taking only the indices (and values) of $f$ corresponding to vertices of $C_l$, also $a_l\in[n-|C_l|]$ is defined such that $a$ and $a_l$ agree on vertices where $a$ is defined, and on the vertices where $a$ is not defined, i.e., the vertices of $C_r$ we define $a_l$ to contain $\neg\text{res}$. We define things analogously for $f_r$ and $a_r$.
 
    
 
    The reason why \eqref{eq:keyIndependceWrong} holds is as before that the two halves of the cycle are conditionally independent because neither $i_{j_1}$ nor $i_{j_2}$ are resampled. One could probably also argue similarly as Tom's grid figure shows. 
 
    From here the proof goes just as in Mario's proof:
 
    \begin{align*}
 
    \sum_{f\in\{0,1'\}^{|C|}} \rho_{C(f)} R^{{(C,a)}}_{C(f)}(p)&=
 
    \sum_{f_l\in\{0,1'\}^{|C_l|}} \sum_{f_r\in\{0,1'\}^{|C_r|}}  (-1)^{|f_l|+|f_r|}p^{|C_l|+|C_r|} \left( R^{{(C_l,a_l)}}_{C_l(f_l)}(p) + R^{{(C_r,a_r)}}_{C_r(f_l)}(p) \right)\\
 
    &= p^{|C|}\sum_{f_l\in\{0,1'\}^{|C_l|}} (-1)^{|f_l|} R^{{(C_l,a_l)}}_{C_l(f_l)}(p) \sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_r|} \\
 
    &\quad + p^{|C|}\sum_{f_r\in\{0,1'\}^{|C_r|}} (-1)^{|f_r|} R^{{(C_r,a_r)}}_{C_r(f_r)}(p) \sum_{f_l\in\{0,1'\}^{|C_l|}} (-1)^{|f_l|} \\
 
    &= 0.
 
    \end{align*}
 
    
 
    Observe that it implies that the only non-zero contribution comes from pairs $(C,a)$ such that $C\cup\{i_j:a_j=\text{res}\}$ is connected. This is because if this set is not connected, then either we can cut $C$ to two halves non-trivially along $\neg\text{res}$ vertices, or there is an island of $\text{res}$ vertices separated from any slots, and therefore from any $0$-s. This latter case has zero contribution since we cannot resample these indices without first setting them to $0$, but under the conditions they can be never reached by any resampling, therefore they remain $1$ always.
 
    
 
    If $|C\cup\{i_j:a_j=\text{res}\}|\geq k+1$ then all contribution has a power at least $k+1$ in $p$ since $(C,a)$ requires the prior appearance of at least $k+1$ particles. If $n\geq k+1$ than all $(C,a)$ such that $|C\cup\{i_j:a_j=\text{res}\}|\leq k$ appears exactly $n$ times, since $(C,a)$ cannot be translationally invariant. Moreover the quantity $R^{{(C,a)}}_{C(f)}(p)$ is independent of $n$ due to the conditioning that every resampling happens on a connected component of length at most $k<n$. This proves that $a_k^{(n)}$ is constant for $n\geq k+1$.
 
    
 
    Note that the heart of the proof is \eqref{eq:keyIndependceWrong}, so this is what we should double check.    
 

	
 
	The same arguments directly translate to the torus and other translationally invariant objects, so we can go higher dimensional :-) as Mario suggested.
 
	
 
	Questions:
 
	\begin{itemize}
 
		\item In view of this proof, can we better characterise $a_k^{(k+1)}$?
 
		\item Why did Mario's and Tom's simulation show that for fixed $C$ the contribution coefficients have constant sign? Is it relevant for proving \ref{it:pos}-\ref{it:geq}?
 
		\item Can we prove the conjectured formula for $a_k^{(3)}$?		
 
	\end{itemize} 
 
\end{comment}
 
        
 
\begin{comment}    
 
    \begin{definition}[Neighborhood]
 
	   	For the length-$n$ cycle we identify sites with $[n]$. 
 
	   	For a subset $S\subseteq [n]$ we define the $k$ neighborhood of $S$ as
 
	   	$N_k(S):=\cup_{s\in S} \{s-k,s-k+1,\ldots,s+k\}$ where numbers are interpreted mod $n$ and we represent the $\equiv 0$ class by $n$).
 
	\end{definition}
0 comments (0 inline, 0 general)