Changeset - f66b48a711a7
[Not reviewed]
0 1 0
Tom Bannink - 8 years ago 2017-09-08 10:56:57
tom.bannink@cwi.nl
Remove unused definition
1 file changed with 12 insertions and 41 deletions:
main.tex
12
41
0 comments (0 inline, 0 general)
main.tex
Show inline comments
 
@@ -200,292 +200,263 @@
 
    We can do the same for $n=4,5$, which gives, for $k\geq 1$ (with Mathematica):
 
    \begin{align*}
 
        a^{(3)}_k &= \frac{(k+2)(k+1)}{6}\\
 
        a^{(4)}_k &= \frac{1}{6}\left(2+\frac{(k+3)(k+2)(k+1)}{6}\right)\\
 
        a^{(5)}_k &= \frac{1}{15}\left(\frac{(k+4)(k+3)(k+2)(k+1)}{20} - \frac{(k+3)(k+2)(k+1)}{30} - \frac{(k+2)(k+1)}{50} + \frac{76(k+1)}{25}\right.\\
 
                  &  \qquad\quad \left. + \frac{626}{125} - \frac{4}{250}
 
                  \left( \left(\frac{1+i\sqrt{5}}{6}\right)^k(94-25\sqrt{5}i)+\left(\frac{1-i\sqrt{5}}{6}\right)^k(94+25\sqrt{5}i) \right)
 
                  \right)
 
    \end{align*}
 
    and from $n=6$ and onwards, the expression becomes complicated and Mathematica can only give expressions including roots of polynomials.
 

	
 
    ~
 

	
 
	If statements \ref{it:pos}-\ref{it:lim} are true, then we can define the function 
 
	$$R^{(\infty)}(p):=\sum_{k=0}^{\infty}a^{(k+1)}_k p^k,$$
 
	which would then have radius of convergence $p_c$, also it would satisfy for all $p\in[0,p_c)$ that $R^{(n)}(p)\leq R^{(\infty)}(p)$ and $\lim\limits_{n\rightarrow\infty}R^{(n)}(p)=R^{(\infty)}(p)$.
 
	It would also imply, that for all $p\in(p_c,1]$ we get $R^{(n)}(p)=\Omega\left(\left(\frac{p}{p_c}\right)^{n/2}\right)$.
 
	This would then imply a very strong critical behaviour. It would mean that for all $p\in[0,p_c)$ the expected number of resamplings is bounded by a constant $R^{(\infty)}(p)$ times $n$, whereas for all $p\in(p_c,1]$ the expected number of resamplings is exponentially growing in $n$.
 
	
 
	Now we turn to the possible proof techniques for justifying the conjectures \ref{it:pos}-\ref{it:lim}.
 
	First note that $\forall n\geq 3$ we have $a^{(n)}_0=0$, since for $p=0$ the expected number of resamplings is $0$.
 
	Also note that the expected number of initial $0$s is $p\cdot n$. If $p\ll1/n$, then with high probability there is a single $0$ initially and the first resampling will fix it, so the linear term in the expected number of resamplings is $np$, therefore $\forall n\geq 3$, $a^{(n)}_1=1$. 
 
	
 
	For the second order coefficients it is a bit harder to argue, but one can use the structure of $M_{(n)}$ to come up with a combinatorial proof. To see this, first assume we have a vector $e_b$ having a single non-zero, unit element indexed with bitstring $b$.
 
	Observe that $e_bM_{(n)}$ is a vector containing polynomial entries, such that the only indices $b'$ which have a non-zero constant term must have $|b'|\geq|b|+1$, since if a resampling produces a $0$ entry it also introduces a $p$ factor. Using this observation one can see that the second order term can be red off from $\rho M_{(n)}\mathbbm{1}+\rho M_{(n)}^2\mathbbm{1}$,
 
	which happens to be $2n$. (Note that it is already a bit surprising, form the steps of the combinatorial proof one would expect $n^2$ terms appearing, but they just happen to cancel each other.) Using similar logic one should be able to prove the claim for $k=3$, but for larger $k$s it seems to quickly get more involved.
 
	
 
	The question is how could we prove the statements \ref{it:pos}-\ref{it:lim} for a general $k$?
 
	
 
    \appendix
 
    
 
    \section{Lower bound on $R^{(n)}(p)$}
 
    Proof that \ref{it:pos} and \ref{it:lim} imply that for any fixed $p>p_c$ we have $R^{(n)}(p)\in\Omega\left(\left(\frac{p}{p_c}\right)^{n/2}\right)$. 
 
    
 
    By definition of $p_c = \lim_{k\to\infty} 1\left/ \sqrt[k]{a_k^{(k+1)}} \right.$ we know that for any $\epsilon$ there exists a $k_\epsilon$ such that for all $k\geq k_\epsilon$ we have $a_k^{(k+1)}\geq (p_c + \epsilon)^{-k}$. Now note that $R^{(n)}(p) \geq a_{n-1}^{(n)}p^{n-1}$ since all terms of the power series are positive, so for $n\geq k_\epsilon$ we have $R^{(n)}(p)\geq (p_c +\epsilon)^{-(n-1)}p^{n-1}$. Note that
 
    \begin{align*}
 
    	R^{(n)}(p)\geq(p_c+\epsilon)^{-(n-1)}p^{n-1}=\left(\frac{p}{p_c+\epsilon}\right)^{n-1} \geq \left(\frac{p}{p_c}\right)^{\frac{n-1}{2}},
 
    \end{align*}
 
    where the last inequality holds for $\epsilon\leq\sqrt{p_c}(\sqrt{p}-\sqrt{p_c})$.
 
    
 
    \section{Calculating the coefficients $a_k^{(n)}$}
 
    Let $\rho'\in\mathbb{R}[p]^{2^n}$ be a vector of polynomials, and let $\text{rank}(\rho')$ be defined in the following way: 
 
    $$\text{rank}(\rho'):=\min_{b\in\{0,1\}^n}\left( |b|+ \text{maximal } k\in\mathbb{N} \text{ such that } p^k \text{ divides } \rho'_b\right).$$
 
	Clearly for any $\rho'$ we have that $\text{rank}(\rho' M_{(n)})\geq \text{rank}(\rho') + 1$. Another observation is, that all elements of $\rho'$ are divisible by $p^{\text{rank}(\rho')-n}$.
 
    We observe that for the initial $\rho$ we have that $\text{rank}(\rho)=n$, therefore $\text{rank}(\rho*(M_{(n)}^k))\geq n+k$, and so $\rho*(M_{(n)}^k)*\mathbbm{1}$ is obviously divisible by $p^{k}$. This implies that $a_k^{(n)}$ can be calculated by only looking at $\rho*(M_{(n)}^1)*\mathbbm{1}, \ldots, \rho*(M_{(n)}^k)*\mathbbm{1}$.
 
    
 
\newpage
 
\section{Proving that $a_k^{(k+1)}=a_k^{(n)}$ for all $n>k$}
 
It is useful to introduce some new notation. We will consider variations of the Markov Chains:
 
We consider $R^{(n)}(p)$ as a power series in $p$ and our main aim in this section is to show that $R^{(n)}(p)$ and $R^{(n+k)}(p)$ are the same up to order $n-1$.
 

	
 
The proof will consider variations of the Markov Chain:
 
\begin{itemize}
 
    \item $\P^{(n)}$ refers to the original process on the length-$n$ cycle.
 
    \item $\P^{[a,b]}$ or $\P^{[n]}$ refers to a similar Markov Chain but on a finite chain ($[a,b]$ or $[1,n]$).
 
\end{itemize}
 
The process on the finite chain has the following modification at the boundary: if a boundary site is resampled, it can only resample its single neighbour so it draws only two new bits. 
 
The process on the finite chain has the following modification at the boundary: if a boundary site is resampled, it can only resample itself and its single neighbour so it draws only two new bits. 
 

	
 
We use the notation $\E^{(n)}$,$\E^{[a,b]}$ and $\E^{[n]}$ similarly for denoting expectations.
 

	
 
\begin{definition}[Paths]
 
	We define a \emph{path} of the Markov Chain as a sequence of states and resampling choices $\xi=((b_0,r_0),(b_1,r_1),...,(b_k,r_k)) \in (\{0,1\}^n\times[n])^k$ indicating that at time $t$ Markov Chain was in state $b_t\in\{0,1\}^n$ and then resampled site $r_t$. We denote by $\mathbb{P}[\xi]$ the probability that the process followed this path.
 
	We denote by $\paths{b}$ the set of all valid paths $\xi$ that start in state $b$ and end in state $\mathbf{1} := 1^n$.
 
\end{definition}
 
We can write the expected number of resamplings per site $R^{(n)}(p)$ as
 
\begin{align}
 
R^{(n)}(p) &= \frac{1}{n}\sum_{b\in\{0,1\}^{n}} \rho_b \; R_b(p) \label{eq:originalsum} ,
 
\end{align}
 
where $R_b(p)$ is the expected number of resamplings when starting from configuration $b$
 
\begin{align*}
 
R_b(p) &= \sum_{\xi \in \paths{b}} \mathbb{P}[\xi] \cdot |\xi| .
 
\end{align*}
 

	
 
We consider $R^{(n)}(p)$ as a power series in $p$ and our main aim in this section is to show that $R^{(n)}(p)$ and $R^{(n+k)}(p)$ are the same up to order $n-1$.
 

	
 
%Note that an \emph{event} is a subset of all possible paths of the Markov Chain.
 
\begin{definition}[Events conditioned on starting state] \label{def:conditionedevents}
 
    For any state $b\in\{0,1\}^n$, define $\start{b}$ as the event that the starting state of the chain is the state $b$. For any event $A$, define
 
    \begin{align*}
 
        \P^{(n)}_b(A) &= \P^{(n)}(A \;|\; \start{b}) %\\
 
        %R_{b,A} &= \mathbb{E}( \#resamples \;|\; A \; , \; \start{b})
 
    \end{align*}
 
    Furthermore, for $v\in[n]$ we define
 
    For any state $b\in\{0,1\}^n$, define $\start{b}$ as the event that the starting state of the chain is the state $b$. For any event $A$ and any $v\in[n]$, define
 
    \begin{align*}
 
        \P^{[n]}_{b_v=1}(A) &= \P^{[n]}(A \;|\; v\text{ is initialized to }1),
 
        \P^{(n)}_b(A) &= \P^{(n)}(A \;|\; \start{b}) \\
 
        \P^{[n]}_{b_v=1}(A) &= \P^{[n]}(A \;|\; v\text{ is initialized to }1) \\
 
        \P^{[n]}_{b_v=b_w=1}(A) &= \P^{[n]}(A \;|\; v\text{ and }w\text{ are initialized to }1) ,
 
    \end{align*}
 
    and we define similarly $\P^{[n]}_{b_v=b_w=1}(A)$ for $v,w\in[n]$.
 
    The last two probabilities are not conditioned on any other bits of the starting state.
 
\end{definition}
 
%Note that we have $\P^{(n)}(\start{b}) = (1-p)^{|b|}p^{n-|b|}$ by definition of our Markov Chain.
 
\begin{definition}[Vertex visiting event] \label{def:visitingResamplings}
 
    Denote by $\mathrm{Z}^{(v)}$ the event that site $v$ becomes zero at any point in time before the Markov Chain terminates. Denote the complement by $\mathrm{NZ}^{(v)}$, i.e. the event that site $v$ does \emph{not} become zero before it terminates. Furthermore define $\mathrm{NZ}^{(v,w)} := \mathrm{NZ}^{(v)} \cap \mathrm{NZ}^{(w)}$, i.e. the event that \emph{both} $v$ and $w$ do not become zero before termination.
 
\end{definition}
 
%\begin{figure}
 
%	\begin{center}
 
%    	\includegraphics{diagram_groups.pdf}
 
%    \end{center}
 
%    \caption{\label{fig:separatedgroups} Illustration of setup of Lemma \ref{lemma:eventindependence}. Here $b_1,b_2\in\{0,1\}^n$ are bitstrings such that all zeroes of $b_1$ and all zeroes of $b_2$ are separated by two indices $v,w$.}
 
%\end{figure}
 
\begin{wrapfigure}{r}{0.25\textwidth}
 
\begin{wrapfigure}[7]{r}{0.25\textwidth} % The first [] argument is number of lines that are narrowed
 
    \centering
 
    \includegraphics{diagram_groups.pdf}
 
    \caption{\label{fig:separatedgroups} Lemma \ref{lemma:eventindependence}.}
 
\end{wrapfigure}
 
The following lemma considers two vertices $v,w$ that are never ``crossed'' so that two halves of the cycle become independent.\begin{lemma}[Conditional independence] \label{lemma:eventindependence} \label{claim:eventindependence}
 
    Let $b=b_1\land b_2\in\{0,1\}^n$ be a state with two groups of zeroes that are separated by at least one site inbetween, as in Figure \ref{fig:separatedgroups}. Let $v$, $w$ be any indices inbetween the groups, such that $b_1$ lies on one side of them and $b_2$ on the other, as shown in the figure. Furthermore, let $A_1$ be any event that depends only on the sites ``on the $b_1$ side of $v,w$'', and similar for $A_2$ (for example $\mathrm{Z}^{(i)}$ for an $i$ on the correct side). Then we have
 
    Let $b=b_1\land b_2\in\{0,1\}^n$ be a state with two separated groups of zeroes as in Figure \ref{fig:separatedgroups}. Let $v$, $w$ be any indices inbetween the groups, such that $b_1$ lies on one side of them and $b_2$ on the other, as shown in the figure. Furthermore, let $A_1$ be any event that depends only on the sites ``on the $b_1$ side of $v,w$'', and similar for $A_2$ (for example $\mathrm{Z}^{(i)}$ for an $i$ on the correct side). Then we have
 
    \begin{align*}
 
        \P^{(n)}_b(\mathrm{NZ}^{(v,w)}, A_1, A_2)
 
        &=
 
        \P^{(n)}_{b_1}(\mathrm{NZ}^{(v,w)}, A_1)
 
        \; \cdot \;
 
        \P^{(n)}_{b_2}(\mathrm{NZ}^{(v,w)}, A_2) \\
 
        \P^{(n)}_b(A_1, A_2 \mid \mathrm{NZ}^{(v,w)})
 
        &=
 
        \P^{(n)}_{b_1}(A_1 \mid \mathrm{NZ}^{(v,w)})
 
        \; \cdot \;
 
        \P^{(n)}_{b_2}(A_2 \mid \mathrm{NZ}^{(v,w)}) .%\\
 
        %R_{b,\mathrm{NZ}^{(v,w)},A_1,A_2}
 
        %&=
 
        %R_{b_1,\mathrm{NZ}^{(v,w)},A_1}
 
        %\; + \;
 
        %R_{b_2,\mathrm{NZ}^{(v,w)},A_2}
 
    \end{align*}
 
    %up to any order in $p$.
 
\end{lemma}
 

	
 
\begin{proof}
 
    From any path $\xi\in\start{b} \cap \mathrm{NZ}^{(v,w)}$ we can construct paths $\xi_1\in\start{b_1}\cap \mathrm{NZ}^{(v,w)}$ and $\xi_2\in\start{b_2}\cap\mathrm{NZ}^{(v,w)}$ as follows. Let us write the path $\xi$ as
 
    $$\xi=\left( (\text{initialize }b), (z_1, s_1, r_1), (z_2, s_2, r_2), ..., (z_{|\xi|}, s_{|\xi|}, r_{|\xi|}) \right)$$
 
    where $z_i\in[n]$ denotes the number of zeroes in the state before the $i$th step, $s_i\in [n]$ denotes the site that was resampled and $r_i\in \{0,1\}^3$ is the result of the three resampled bits. We have
 
    \begin{align*}
 
        \P^{(n)}_b[\xi] &= \P(\text{pick }s_1 | z_1) \P(r_1) \P(\text{pick }s_2 | z_2) \P(r_2) \cdots \P(\text{pick }s_{|\xi|} | z_{|\xi|}) \P(r_{|\xi|}) \\
 
                &= \frac{1}{z_1} \P(r_1) \frac{1}{z_2} \P(r_2) \cdots \frac{1}{z_{|\xi|}} \P(r_{|\xi|}) .
 
    \end{align*}
 
    To construct $\xi_1$ and $\xi_2$, start with $\xi_1 = \left( (\text{initialize }b_1) \right)$ and $\xi_2 = \left( (\text{initialize }b_2) \right)$. For each step $(z_i,s_i,r_i)$ in $\xi$ do the following: if $s_i$ is ``on the $b_1$ side of $v,w$'' then append $(z^{(1)}_i,s_i,r_i)$ to $\xi_1$ and if its ``on the $b_2$ side of $v,w$'' then append $(z^{(2)}_i,s_i,r_i)$ to $\xi_2$. Here $z^{(1)}_i$ is the number of zeroes that were on the $b_1$ side and $z^{(2)}_i$ is the number of zeroes on the $b_2$ side so we have $z_i = z^{(1)}_i + z^{(2)}_i$.
 
    %Let the resulting paths be
 
    %\begin{align*}
 
    %    \xi_1 &= \left( (z^{(1)}_{a_1}, s_{a_1}, r_{a_1}), (z^{(1)}_{a_2}, s_{a_2}, r_{a_2}), ..., (z^{(1)}_{a_{|\xi_1|}}, s_{a_{|\xi_1|}}, r_{a_{|\xi_1|}}) \right) \\
 
    %    \xi_2 &= \left( (z^{(2)}_{b_1}, s_{b_1}, r_{b_1}), (z^{(2)}_{b_2}, s_{b_2}, r_{b_2}), ..., (z^{(2)}_{b_{|\xi_1|}}, s_{b_{|\xi_1|}}, r_{b_{|\xi_1|}}) \right)
 
    %\end{align*}
 
    Now $\xi_1$ is a valid (terminating) path from $b_1$ to $\mathbf{1}$, because in the original path $\xi$, all zeroes ``on the $b_1$ side'' have been resampled by resamplings ``on the $b_1$ side''. Since the sites $v,w$ inbetween never become zero, there can not be any zero ``on the $b_1$ side'' that was resampled by a resampling ``on the $b_2$ side''.
 
    Vice versa, any two paths $\xi_1\in\start{b_1}\cap \mathrm{NZ}^{(v,w)}$ and $\xi_2\in\start{b_2}\cap\mathrm{NZ}^{(v,w)}$ also induce a path $\xi\in\start{b} \cap \mathrm{NZ}^{(v,w)}$ by simply interleaving the resampling positions. Note that $\xi_1,\xi_2$ actually induce $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ paths $\xi$ because of the possible orderings of interleaving the resamplings in $\xi_1$ and $\xi_2$.
 
    For a fixed $\xi_1,\xi_2$ we will now show the following:
 
    \begin{align*}
 
        \sum_{\substack{\xi\in\start{b} \cap \mathrm{NZ}^{(v,w)} \text{ s.t.}\\ \xi \text{ decomposes into } \xi_1,\xi_2 }} \P^{(n)}_b[\xi] &=
 
        \sum_{\text{interleavings of }\xi_1,\xi_2} \P(\text{interleaving}) \cdot \P^{(n)}_{b_1}[\xi_1] \cdot \P^{(n)}_{b_2}[\xi_2] \\
 
        &= \P^{(n)}_{b_1}[\xi_1] \cdot \P^{(n)}_{b_2}[\xi_2]
 
    \end{align*}
 
    where both sums are over $\binom{|\xi_1|+|\xi_2|}{|\xi_1|}$ terms.
 
    This is best explained by an example. Lets consider the following fixed $\xi_1,\xi_2$ and an example interleaving where we choose steps from $\xi_2,\xi_1,\xi_1,\xi_2,\cdots$:
 
    \begin{align*}
 
        \xi_1 &= \left( (z_1, s_1, r_1), (z_2, s_2, r_2), (z_3, s_3, r_3), (z_4, s_4, r_4),\cdots  \right) \\
 
        \xi_2 &= \left( (z_1', s_1', r_1'), (z_2', s_2', r_2'), (z_3', s_3', r_3'), (z_4', s_4', r_4'),\cdots  \right) \\
 
        \xi   &= \left( (z_1 + z_1', s_1', r_1'), (z_1+z_2', s_1, r_1), (z_2+z_2', s_2, r_2), (z_3+z_2', s_2', r_2'), \cdots \right)
 
    \end{align*}
 
    The probability of $\xi_1$, started from $b_1$, is given by
 
    \begin{align*}
 
        \P^{(n)}_{b_1}[\xi_1] &= \P(\text{pick }s_1|z_1) \P(r_1) \P(\text{pick }s_2|z_2) \P(r_2) \cdots \P(\text{pick }s_{|\xi_1|}|z_{|\xi_1|}) \P(r_{|\xi_1|}) \\
 
                &= \frac{1}{z_1} \P(r_1) \frac{1}{z_2} \P(r_2) \cdots \frac{1}{z_{|\xi_1|}} \P(r_{|\xi_1|}) .
 
    \end{align*}
 
    and similar for $\xi_2$ but with primes.
 
    The following diagram illustrates all possible interleavings, and the red line corresponds to the particular interleaving $\xi$ in the example above.
 
    \begin{center}
 
        \includegraphics{diagram_paths2.pdf}
 
    \end{center}
 
    For the labels shown within the grid, define $p_{ij} = \frac{z_i}{z_i + z_j'}$.
 
    The probability of $\xi$ is given by
 
    \begin{align*}
 
        \P^{(n)}_b[\xi] &= \frac{1}{z_1+z_1'} \P(r_1') \frac{1}{z_1+z_2'} \P(r_1) \frac{1}{z_2+z_2'} \P(r_2) \frac{1}{z_3+z_2'} \P(r_2') \cdots \tag{by definition}\\
 
        &=
 
        \frac{z_1'}{z_1+z_1'} \frac{1}{z_1'} \P(r_1') \;
 
        \frac{z_1 }{z_1+z_2'} \frac{1}{z_1 } \P(r_1 ) \;
 
        \frac{z_2 }{z_2+z_2'} \frac{1}{z_2 } \P(r_2 ) \;
 
        \frac{z_2'}{z_3+z_2'} \frac{1}{z_2'} \P(r_2')
 
        \cdots \tag{rewrite fractions}\\
 
        &=
 
        \frac{z_1'}{z_1+z_1'} \;
 
        \frac{z_1 }{z_1+z_2'} \;
 
        \frac{z_2 }{z_2+z_2'} \;
 
        \frac{z_2'}{z_3+z_2'}
 
        \cdots
 
        \P^{(n)}_{b_1}[\xi_1] \; \P^{(n)}_{b_2}[\xi_2] \tag{definition of $\P^{(n)}_{b_i}[\xi_i]$} \\
 
        &= (1-p_{1,1}) \; p_{1,2} \; p_{2,2} \; (1-p_{3,2}) \; \P^{(n)}_{b_1}[\xi_1] \; \P^{(n)}_{b_2}[\xi_2] \tag{definition of $p_{i,j}$} \\
 
        &= \P(\text{path in grid}) \; \P^{(n)}_{b_1}[\xi_1] \; \P^{(n)}_{b_2}[\xi_2]
 
    \end{align*}
 
    In the grid we see that at every point the probabilities sum to 1, and we always reach the end, so we know the sum of all paths in the grid is 1. This proves the required equality.
 

	
 
    We obtain
 
    \begin{align*}
 
        \P^{(n)}_b(\mathrm{NZ}^{(v,w)},A_1,A_2)
 
        &= \sum_{\substack{\xi\in\start{b} \cap \\ \mathrm{NZ}^{(v,w)}\cap A_1\cap A_2}} \P^{(n)}_b(\xi) \\
 
        &= \sum_{\substack{\xi_1\in\start{b_1} \cap \\ \mathrm{NZ}^{(v,w)}\cap A_1}} \;\;
 
          \sum_{\substack{\xi_2\in\start{b_1} \cap \\ \mathrm{NZ}^{(v,w)}\cap A_2}}
 
        \P^{(n)}_{b_1}(\xi_1)\cdot\P^{(n)}_{b_2}(\xi_2) \\
 
        &=
 
        \P^{(n)}_{b_1}(\mathrm{NZ}^{(v,w)},A_1)
 
        \; \cdot \;
 
        \P^{(n)}_{b_2}(\mathrm{NZ}^{(v,w)},A_2).
 
    \end{align*}
 
    The second equality follows directly from $\mathbb{P}(A\mid B)=\mathbb{P}(A,B)/\mathbb{P}(B)$ and setting $A_1,A_2$ to the always-true event.
 
    %For the third equality, by the same reasoning we can decompose the paths
 
    %\begin{align*}
 
    %    \P^{(n)}_b(\mathrm{NZ}^{(v,w)},A_1,A_2) R_{b,\mathrm{NZ}^{(v,w)},A_1,A_2}
 
    %    &\equiv \sum_{\substack{\xi\in\start{b}\\\xi \in \mathrm{NZ}^{(v,w)}\cap A_1\cap A_2}} \P^{(n)}[\xi] |\xi| \\
 
    %    &= \sum_{\substack{\xi_1\in\start{b_1}\\\xi_1 \in \mathrm{NZ}^{(v,w)}\cap A_1}}
 
    %      \sum_{\substack{\xi_2\in\start{b_2}\\\xi_2 \in \mathrm{NZ}^{(v,w)}\cap A_2}}
 
    %    \P^{(n)}[\xi_1]\P^{(n)}[\xi_2] (|\xi_1| + |\xi_2|) \\
 
    %    &=
 
    %    \P^{(n)}_{b_2}(\mathrm{NZ}^{(v,w)},A_2) \P^{(n)}_{b_1}(\mathrm{NZ}^{(v,w)},A_1) R_{b_1,\mathrm{NZ}^{(v,w)},A_1} \\
 
    %    &\quad +
 
    %    \P^{(n)}_{b_1}(\mathrm{NZ}^{(v,w)},A_1) \P^{(n)}_{b_2}(\mathrm{NZ}^{(v,w)},A_2) R_{b_2,\mathrm{NZ}^{(v,w)},A_2} .
 
    %\end{align*}
 
    %Dividing by $\P^{(n)}_b(\mathrm{NZ}_{(v,w)},A_1,A_2)$ and using the first equality gives the desired result.
 
\end{proof}
 

	
 
\begin{lemma}[Conditional independence 2] \label{lemma:eventindependenceNew}
 
	Let $v,w \in [n]$, and let $A$ be any event that depends only on the sites $[v,w]$ (meaning the initialization and resamples) and similarly $B$ an event that depends only on the sites $[w,v]$. (For example $\mathrm{Z}^{(s)}$ or ``$s$ has been resampled at least $k$ times'' for an $s$ on the correct interval). Then we have
 
	\begin{align*}
 
		\P^{(n)}(\mathrm{NZ}^{(v,w)}\cap A\cap B)
 
		=
 
		\P_{b_v=b_w=1}^{[v,w]}(\mathrm{NZ}^{(v,w)}\cap A)
 
		\; \cdot \;
 
		\P^{[w,v]}(\mathrm{NZ}^{(v,w)}\cap B),
 
	\end{align*}
 
	and similarly
 
	\begin{align*}
 
		\P^{[n]}(\mathrm{NZ}^{(v)}\cap A\cap B)
 
		=
 
		\P_{b_v=1}^{[v]}(\mathrm{NZ}^{(v)}\cap A)
 
		\; \cdot \;
 
		\P^{[v,n]}(\mathrm{NZ}^{(v)}\cap B)
 
	\end{align*}
 
	where there is no longer a condition on the starting state.
 
\end{lemma}
 
\begin{proof}
 
    We start by relating the different Markov Chains.
 
    If $b$ is a starting state where all the zeroes are inside an interval $[v,w]$ (not on the boundary) then we can switch between the cycle and the finite chain:
 
    \begin{align*}
 
        \P^{(n)}_{b} (\NZ{v,w} \cap A) = \P^{[v,w]}_b (\NZ{v,w}\cap A) .
 
    \end{align*}
 
    If vertex $v$ and $w$ never become zero, then the zeroes never get outside of the interval $[v,w]$ and we can ignore the entire circle and only focus on the process within $[v,w]$.
 
    We can apply this to the result of Lemma \ref{lemma:eventindependence}, to get
 
    \begin{align*}
 
        \P^{(n)}_b(\mathrm{NZ}^{(v,w)} \cap A \cap B)
 
        &=
 
        \P^{[v,w]}_{b|_{[v,w]}}(\mathrm{NZ}^{(v,w)} \cap A)
 
        \; \cdot \;
 
        \P^{[v,w]}_{b|_{[w,v]}}(\mathrm{NZ}^{(v,w)} \cap B)
 
        \P^{[w,v]}_{b|_{[w,v]}}(\mathrm{NZ}^{(v,w)} \cap B)
 
    \end{align*}
 
    Note that this also holds if $b$ has zeroes on the boundary (i.e. $b_v=0$ or $b_w=0$), because then both sides of the equations are zero.
 
    For the starting state we have the expression $\P^{(n)}(\start{b}) = (1-p)^{|b|} p^{n-|b|}$ so it splits into a product
 
    \begin{align*}
 
        \P^{(n)}(\start{b}) = \P^{[v,w]}(\start{b|_{[v+1,w-1]}}) \;\; \P^{[w,v]}(\start{b|_{[w,v]}})
 
    \end{align*}
 
    where we have to be careful to count the boudary only once.
 
    We now have
 
    \begin{align*}
 
		\P^{(n)}(\mathrm{NZ}^{(v,w)}\cap A\cap B)
 
        &= \sum_{b\in\{0,1\}^n} \P^{(n)}_b(\mathrm{NZ}^{(v,w)}\cap A\cap B) \; \P^{(n)}(\start{b}) \\
 
        &= \sum_{b\in\{0,1\}^n}
 
            \P^{[v,w]}_{b|_{[v,w]}}(\mathrm{NZ}^{(v,w)}\cap A)
 
            \P^{[v,w]}(\start{b|_{[v+1,w-1]}})
 
            \\ &\qquad\qquad\quad\cdot
 
            \P^{[w,v]}_{b|_{[w,v]}}(\mathrm{NZ}^{(v,w)}\cap B)
 
            \P^{[w,v]}(\start{b|_{[w,v]}}) \\
 
        &= \left( \sum_{\substack{b_1\in\{0,1\}^{[v,w]}\\ b_v=b_w=1}}
 
            \P^{[v,w]}_{b_1}(\mathrm{NZ}^{(v,w)}\cap A)
 
            \P^{[v,w]}(\start{b_1}) \right)
 
            \\ &\qquad \cdot
 
           \left( \sum_{b_2\in\{0,1\}^{[w,v]}}
 
            \P^{[w,v]}_{b_2}(\mathrm{NZ}^{(v,w)}\cap B)
 
            \P^{[w,v]}(\start{b_2}) \right) \\
 
        &=  \P^{[v,w]}_{b_v=b_w=1}(\mathrm{NZ}^{(v,w)}\cap A) \cdot
 
            \P^{[w,v]}(\mathrm{NZ}^{(v,w)}\cap B)
 
    \end{align*}
 
    The second equality follows in a similar way.
 
\end{proof}
 

	
 
	\begin{definition}[Connected patches]
 
		Let $P$ be an interval $[a,b]$. We say that $P$ is a patch of a particular run of the process if $P$ is a maximal connected component of the vertices that have ever become $0$ before termination. We denote the set of patches of a run by $\mathcal{P}$. For a patch $P$ let $P\in \mathcal{P}$ denote the event that one of the patches is equal to $P$. 
 
		In other words
 
		\begin{align*}
 
		P\in\mathcal{P} := \NZ{a-1} \cap \Z{a} \cap \Z{a+1} \cap \cdots \cap \Z{b-1} \cap \Z{b} \cap \NZ{b+1} .
 
		\end{align*}
 
		(In the extreme case when $P$ covers the whole cycle $[n]$, then instead $P\in\mathcal{P}:= \bigcap_{v\in[n]}\Z{v}$.)
 
	\end{definition} 
 

	
 
	We are often going to use the observation that we can partition the event $\Z{v}$ using patches:
 
	\begin{align*}
 
	\Z{v} = \dot\bigcup_{P\text{ patch } : v\in P} (P\in\mathcal{P})
 
	\end{align*}
 

	
 
The intuition of the following lemma is that the far right can only affect the zero vertex if there is an interaction chain forming, which means that every vertex should get resampled to $0$ at least once.
 
\begin{lemma}\label{lemma:probIndepNew}
 
	$\forall n\in \mathbb{N}_+:\P^{[n]}(\Z{1})-\P^{[n+1]}(\Z{1}) = \bigO{p^{n}}$. (Should be true with $\bigO{p^{n+1}}$ as well.)
 
\end{lemma}
0 comments (0 inline, 0 general)