Files
@ 03b85970d933
Branch filter:
Location: AENC/switchchain/cpp/graph_spectrum.hpp - annotation
03b85970d933
1.7 KiB
text/x-c++hdr
Re-run canonical for fixed powerlaw
b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 | #include "graph.hpp"
#include <Eigen/Dense>
#include <Eigen/Eigenvalues>
using MatrixType =
Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
// A: Adjacency matrix
// lambda_max <= d_max
//
// L: Laplacian
// L = D - A
///
// P: Random walk matrix
// lambda_max = 1
class GraphSpectrum {
public:
GraphSpectrum(const Graph& g) : graph(g) {}
~GraphSpectrum() {}
std::vector<float> computeAdjacencySpectrum() const {
// matrix stored as std::vector<std::vector<bool>>
auto& badj = graph.getBooleanAdj();
// Convert it to MatrixType
auto n = badj.size();
MatrixType m(n, n);
for (auto i = 0u; i < n; ++i)
for (auto j = 0u; j < n; ++j)
m(i, j) = badj[i][j] ? 1.0f : 0.0f;
return getEigenvalues_(m);
}
std::vector<float> computeLaplacianSpectrum() const {
// matrix stored as std::vector<std::vector<bool>>
auto& badj = graph.getBooleanAdj();
auto& adj = graph.getAdj();
// - A
auto n = badj.size();
MatrixType m(n, n);
for (auto i = 0u; i < n; ++i)
for (auto j = 0u; j < n; ++j)
m(i, j) = badj[i][j] ? -1.0f : 0.0f;
// + D
for (auto i = 0u; i < n; ++i)
m(i, i) = float(adj[i].size());
return getEigenvalues_(m);
}
private:
const Graph& graph;
std::vector<float> getEigenvalues_(const MatrixType& m) const {
Eigen::SelfAdjointEigenSolver<MatrixType> es(
m, Eigen::DecompositionOptions::EigenvaluesOnly);
auto ev = es.eigenvalues();
return std::vector<float>(ev.data(), ev.data() + ev.rows() * ev.cols());
}
};
|