Files
@ 03b85970d933
Branch filter:
Location: AENC/switchchain/triangle_exponent_plots.m - annotation
03b85970d933
4.1 KiB
application/vnd.wolfram.mathematica.package
Re-run canonical for fixed powerlaw
ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 9de2b1d29b5d 68c5df4ebb15 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 9de2b1d29b5d ba07c5475997 ba07c5475997 ba07c5475997 9de2b1d29b5d ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 32a7f1c13790 32a7f1c13790 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d ba07c5475997 ba07c5475997 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d ba07c5475997 ba07c5475997 9de2b1d29b5d 9de2b1d29b5d 68c5df4ebb15 68c5df4ebb15 68c5df4ebb15 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 a410aaa16af7 ba07c5475997 9de2b1d29b5d a410aaa16af7 9de2b1d29b5d a410aaa16af7 a410aaa16af7 68c5df4ebb15 68c5df4ebb15 68c5df4ebb15 | (* ::Package:: *)
Needs["ErrorBarPlots`"]
(* ::Section:: *)
(*Triangle exponent*)
(* ::Text:: *)
(*Expected number of triangles is the following powerlaw*)
(* ::DisplayFormula:: *)
(*#triangles = const\[Cross]n^(T(\[Tau])) where T(\[Tau])=3/2 (3-\[Tau])*)
(* When importing from exponent-only-data file or property-data file *)
(* graphdata_exponent_mix32.m *)
(* graphdata_exponent_highN.m *)
(* graphdata_properties2.m *)
(* graphdata_canonical_properties.m *)
gsraw=Import[NotebookDirectory[]<>"data/graphdata_exponent_mix32.m"];
gsraw=SortBy[gsraw,#[[1,1]]&]; (* Sort by n *)
averagesGrouped=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* averagesGrouped[[ tau index, n index, run index , {ntau, avgtri} ]] *)
nlabels=Map["n = "<>ToString[#]&,averagesGrouped[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,averagesGrouped[[All,1,1,1,2]]];
mediansErrorBars=Map[
{{#[[1,1,1]],Median[#[[All,2]]]},
ErrorBar[MedianDeviation[#[[All,2]]]]
}&,averagesGrouped,{2}];
averagesErrorBars=Map[
{{#[[1,1,1]],Mean[#[[All,2]]]},
ErrorBar[StandardDeviation[#[[All,2]]]]
}&,averagesGrouped,{2}];
ErrorListPlot[averagesErrorBars,Joined->True,PlotMarkers->Automatic,PlotRange->All,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels]
ErrorListPlot[mediansErrorBars,Joined->True,PlotMarkers->Automatic,PlotRange->All,AxesLabel->{"n","median triangles"},PlotLegends->taulabels]
ListLogLogPlot[averagesErrorBars[[All,All,1]],Joined->True,PlotMarkers->Automatic,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels]
ListLogLogPlot[mediansErrorBars[[All,All,1]],Joined->True,PlotMarkers->Automatic,AxesLabel->{"n","median triangles"},PlotLegends->taulabels]
(* ::Subsection:: *)
(*Fitting the log-log-plot*)
nRange=5;;-1;
nRange=All;
averagesLoglogdata=Log[averagesErrorBars[[All,nRange,1]]];
mediansLoglogdata=Log[mediansErrorBars[[All,nRange,1]]];
averagesFits=Map[Fit[#,{1,logn},logn]&,averagesLoglogdata];
averagesFitsExtra=Map[LinearModelFit[#,logn,logn]&,averagesLoglogdata];
mediansFits=Map[Fit[#,{1,logn},logn]&,mediansLoglogdata];
mediansFitsExtra=Map[LinearModelFit[#,logn,logn]&,mediansLoglogdata];
averagesFitsExtra[[1]]["ParameterConfidenceIntervalTable"]
averagesFitsExtra[[1]]["BestFitParameters"]
averagesFitsExtra[[1]]["ParameterErrors"]
averagesFitsExtra[[1]]["ParameterConfidenceIntervals"]
plot1a=Show[ListLogLogPlot[averagesErrorBars[[All,All,1]],Joined->False,PlotMarkers->Automatic,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels],Plot[averagesFits,{logn,1,2000}]]
plot1b=Show[ListLogLogPlot[mediansErrorBars[[All,All,1]],Joined->False,PlotMarkers->Automatic,AxesLabel->{"n","median triangles"},PlotLegends->taulabels],Plot[mediansFits,{logn,1,2000}]]
Export[NotebookDirectory[]<>"plots/avgtris_n.pdf",plot1]
(* ::Subsection:: *)
(*Plot of T(\[Tau])*)
tauValues=averagesGrouped[[All,1,1,1,2]];
averagesExponents=Transpose[{tauValues,averagesFits[[All,2,1]]}];
mediansExponents=Transpose[{tauValues,mediansFits[[All,2,1]]}];
Show[ListPlot[{averagesExponents,mediansExponents},Joined->True,PlotMarkers->Automatic,AxesLabel->{"tau","exponent"},PlotRange->{{2,3},{0,1.6}}],Plot[3/2(3-tau),{tau,2,3}]]
(* ::Subsection:: *)
(*T(\[Tau]) including error bars*)
(* For visual, shift the tau values slightly left or right to distinguish the two datasets *)
tauValues=averagesGrouped[[All,1,1,1,2]];
averagesExponentsErrorBars=Map[{{#[[1]],#[[2]]["BestFitParameters"][[2]]},ErrorBar[#[[2]]["ParameterConfidenceIntervals"][[2]]-#[[2]]["BestFitParameters"][[2]]]}&,
Transpose[{tauValues-0.005,averagesFitsExtra}]];
mediansExponentsErrorBars=Map[{{#[[1]],#[[2]]["BestFitParameters"][[2]]},ErrorBar[#[[2]]["ParameterConfidenceIntervals"][[2]]-#[[2]]["BestFitParameters"][[2]]]}&,
Transpose[{tauValues+0.005,mediansFitsExtra}]];
plot4=Show[ErrorListPlot[{averagesExponentsErrorBars,mediansExponentsErrorBars},Joined->True,PlotMarkers->Automatic,Frame->True,FrameLabel->{"tau","triangle exponent"},PlotRange->{{2,3},{0,1.6}},ImageSize->300],Plot[3/2(3-tau),{tau,2,3},PlotStyle->{Dashed}]]
Export[NotebookDirectory[]<>"plots/triangle_exponent.pdf",plot2]
|