Files @ 03b85970d933
Branch filter:

Location: AENC/switchchain/triangle_successrate_correlation_plots.m - annotation

03b85970d933 4.6 KiB application/vnd.wolfram.mathematica.package Show Source Show as Raw Download as Raw
Tom Bannink
Re-run canonical for fixed powerlaw
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
(* ::Package:: *)

Needs["ErrorBarPlots`"]


(* ::Section:: *)
(*Plot successrate over time*)


gsraw=Import[NotebookDirectory[]<>"data/graphdata_successrates_timeevol.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)


gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: avgtris
3: successrate
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,gdata[[All,1,1,1,2]]];


TwoAxisPlot[{f_, g_},{plotrange1_,plotrange2_}] := 
Module[{fgraph, ggraph, frange, grange, fticks, gticks, manualRanges},
manualRanges={plotrange1,plotrange2};
{fgraph, ggraph} = 
MapIndexed[
ListPlot[#1, Axes -> True, Joined->True,ImageSize->300,
PlotRange->manualRanges[[#2[[1]]]],
DataRange->{0,measureSkip*maxTime}
(* PlotStyle -> ColorData[1][#2[[1]]] *)
] &, {f, g}];
{frange, grange} = (PlotRange /. AbsoluteOptions[#, PlotRange])[[2]] & /@ {fgraph, ggraph};
fticks = N@FindDivisions[frange, 10]; 
gticks = Quiet@Transpose@{fticks, ToString[NumberForm[#, 2], StandardForm] & /@ Rescale[fticks, frange, grange]}; 
Show[fgraph, ggraph /. Graphics[graph_, s___] :> Graphics[GeometricTransformation[graph, RescalingTransform[{{0, 1}, grange}, {{0, 1}, frange}]], s],
Axes -> False, Frame -> True,
(*FrameStyle -> {ColorData[1] /@ {1, 2}, {Automatic, Automatic}}, *)
FrameTicks -> {{fticks, gticks}, {Automatic, Automatic}}]]


(* Test of plot function *)
TwoAxisPlot[{gdata[[1,1,{1,3},2]],gdata[[1,1,{1,3},3]]},{{0,12000},{0,100}}]


MeanFilter


(* For export *)
selectedData=gdata[[2,1]][[{1,3,4,5}]];
measureSkip=100;
minCount=Min[Map[Min[#[[2]]]&,selectedData]];
maxCount=Max[Map[Max[#[[2]]]&,selectedData]];
maxCount=Max[Map[1.5*Max[#[[2,-100;;-1]]]&,selectedData]];
maxTime=Max[Map[Length[#[[2]]]&,selectedData]];
(* maxTime=Round[30000/measureSkip]; *)
skipPts=Max[1,Round[maxTime/5000]]; (* Plotting every point is slow. Plot only once per `skipPts` timesteps *)
maxTime=Round[50000/measureSkip];
coarseData=Map[#[[2,1;;maxTime;;skipPts]]&,selectedData];
coarseData2=Map[#[[3,1;;maxTime;;skipPts]]/100&,selectedData];
coarseData3=Map[MeanFilter[#[[3]],6]/100&,selectedData];
labels=Map["{n,tau} = "<>ToString[#[[1]]]&,selectedData]
TwoAxisPlot[{coarseData,coarseData2},{{0,maxCount},{0,1}}]
plotTimeEvol1=ListPlot[coarseData,Joined->True,PlotRange->{0*minCount,maxCount},DataRange->{0,measureSkip*maxTime},Frame->True,FrameLabel->{"timesteps","number of triangles"},PlotLabel->"n = 1000, \[Tau]=2.2",ImageSize->300]
plotTimeEvol2=ListPlot[coarseData2,Joined->True,PlotRange->{0,1},DataRange->{0,measureSkip*maxTime},Frame->True,FrameLabel->{"timesteps","successrate"},PlotLabel->"n = 1000, \[Tau]=2.2",ImageSize->300,PlotStyle->Opacity[0.5]];
plotTimeEvol3=ListPlot[coarseData3,Joined->True,PlotRange->{0,1},DataRange->{0,measureSkip*maxTime}];
plotTimeEvol4=Show[plotTimeEvol2,plotTimeEvol3]
(* Map[ListPlot[#,Joined->True,PlotRange\[Rule]{minCount,maxCount},DataRange\[Rule]{0,maxTime}]&,coarseData] *)


Export[NotebookDirectory[]<>"plots/timeevol_22_successrate_triangles.pdf",plotTimeEvol1]
Export[NotebookDirectory[]<>"plots/timeevol_22_successrate.pdf",plotTimeEvol4]


(* ::Section:: *)
(*Plot #trianges vs some successrate*)


gsraw=Import[NotebookDirectory[]<>"data/graphdata_successrates.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)


gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: avgtris
3: successrate
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["\[Tau] = "<>ToString[#]&,gdata[[All,1,1,1,2]]];


allPlots=Map[Show[
ListPlot[#[[All,{3,2}]],
AxesOrigin->{0,0},
Frame->True,FrameLabel->{"successrate","average number of triangles"},
(*AspectRatio->Automatic,*)
PlotRange->{{0,1},Automatic},
ImageSize->Automatic,
PlotLabel->"n = "<>ToString[#[[1,1,1]]]<>" , \[Tau] = "<>ToString[#[[1,1,2]]],
PlotStyle->PointSize[0.0001]
],Plot[x,{x,1,10000}]]
&,gdata,{2}]


combiPlot=ListLogPlot[gdata[[{1,3,5,7,9},1,All,{3,2}]],
AxesOrigin->{0,0},
Frame->True,FrameLabel->{"successrate","average number of triangles"},
(*AspectRatio->Automatic,*)
PlotRange->Automatic,
ImageSize->300,
PlotLabel->"n = "<>ToString[gdata[[1,1]][[1,1,1]]],
PlotLegends->taulabels[[{1,3,5,7,9}]]
]


Export[NotebookDirectory[]<>"plots/successrate_correlations.pdf",combiPlot]