Files
@ 148e381c9fd3
Branch filter:
Location: AENC/switchchain/cpp/graph_spectrum.hpp - annotation
148e381c9fd3
1.7 KiB
text/x-c++hdr
Run exponent simulation on smaller n
b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 | #include "graph.hpp"
#include <Eigen/Dense>
#include <Eigen/Eigenvalues>
using MatrixType =
Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
// A: Adjacency matrix
// lambda_max <= d_max
//
// L: Laplacian
// L = D - A
///
// P: Random walk matrix
// lambda_max = 1
class GraphSpectrum {
public:
GraphSpectrum(const Graph& g) : graph(g) {}
~GraphSpectrum() {}
std::vector<float> computeAdjacencySpectrum() const {
// matrix stored as std::vector<std::vector<bool>>
auto& badj = graph.getBooleanAdj();
// Convert it to MatrixType
auto n = badj.size();
MatrixType m(n, n);
for (auto i = 0u; i < n; ++i)
for (auto j = 0u; j < n; ++j)
m(i, j) = badj[i][j] ? 1.0f : 0.0f;
return getEigenvalues_(m);
}
std::vector<float> computeLaplacianSpectrum() const {
// matrix stored as std::vector<std::vector<bool>>
auto& badj = graph.getBooleanAdj();
auto& adj = graph.getAdj();
// - A
auto n = badj.size();
MatrixType m(n, n);
for (auto i = 0u; i < n; ++i)
for (auto j = 0u; j < n; ++j)
m(i, j) = badj[i][j] ? -1.0f : 0.0f;
// + D
for (auto i = 0u; i < n; ++i)
m(i, i) = float(adj[i].size());
return getEigenvalues_(m);
}
private:
const Graph& graph;
std::vector<float> getEigenvalues_(const MatrixType& m) const {
Eigen::SelfAdjointEigenSolver<MatrixType> es(
m, Eigen::DecompositionOptions::EigenvaluesOnly);
auto ev = es.eigenvalues();
return std::vector<float>(ev.data(), ev.data() + ev.rows() * ev.cols());
}
};
|