Files
@ 1c8999d261fd
Branch filter:
Location: AENC/switchchain/cpp/graph_spectrum.hpp - annotation
1c8999d261fd
1.7 KiB
text/x-c++hdr
Update canonical powerlaw generator
b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 | #include "graph.hpp"
#include <Eigen/Dense>
#include <Eigen/Eigenvalues>
using MatrixType =
Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
// A: Adjacency matrix
// lambda_max <= d_max
//
// L: Laplacian
// L = D - A
///
// P: Random walk matrix
// lambda_max = 1
class GraphSpectrum {
public:
GraphSpectrum(const Graph& g) : graph(g) {}
~GraphSpectrum() {}
std::vector<float> computeAdjacencySpectrum() const {
// matrix stored as std::vector<std::vector<bool>>
auto& badj = graph.getBooleanAdj();
// Convert it to MatrixType
auto n = badj.size();
MatrixType m(n, n);
for (auto i = 0u; i < n; ++i)
for (auto j = 0u; j < n; ++j)
m(i, j) = badj[i][j] ? 1.0f : 0.0f;
return getEigenvalues_(m);
}
std::vector<float> computeLaplacianSpectrum() const {
// matrix stored as std::vector<std::vector<bool>>
auto& badj = graph.getBooleanAdj();
auto& adj = graph.getAdj();
// - A
auto n = badj.size();
MatrixType m(n, n);
for (auto i = 0u; i < n; ++i)
for (auto j = 0u; j < n; ++j)
m(i, j) = badj[i][j] ? -1.0f : 0.0f;
// + D
for (auto i = 0u; i < n; ++i)
m(i, i) = float(adj[i].size());
return getEigenvalues_(m);
}
private:
const Graph& graph;
std::vector<float> getEigenvalues_(const MatrixType& m) const {
Eigen::SelfAdjointEigenSolver<MatrixType> es(
m, Eigen::DecompositionOptions::EigenvaluesOnly);
auto ev = es.eigenvalues();
return std::vector<float>(ev.data(), ev.data() + ev.rows() * ev.cols());
}
};
|