Files
@ 1c8999d261fd
Branch filter:
Location: AENC/switchchain/powerlaw_info.tex - annotation
1c8999d261fd
1.2 KiB
text/x-tex
Update canonical powerlaw generator
42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d | \documentclass{article}
\begin{document}
\section{Continuous powerlaw with minimum cut-off}
Exponent $\tau > 1$.
\subsection{Also maximum cut-off}
Let $m$ be the minimum, $M$ be the maximum.\\
PDF: $$f(x) = \frac{\tau-1}{m^{-(\tau-1)} - M^{-(\tau-1)}} x^{-\tau}$$
CDF: $$F(x) = \frac{m^{-(\tau-1)} - x^{-(\tau-1)}}{m^{-(\tau-1)} - M^{-(\tau-1)}}$$
Inverse: $$F^{-1}(y) = \left( (1-y) m^{-(\tau-1)} + y M^{-(\tau-1)} \right)^{\frac{-1}{\tau-1}}$$
i.e. linear interpolate between $M^{-(\tau-1)} < m^{-(\tau-1)}$.\\
$F^{-1}(0) = m$ and $F^{-1}(1) = M$.\\
For $m=1$ and $M$ steps of interpolation:\\
$F^{-1}(1/M) = \left( 1-M^{-1} + M^{-\tau} \right)^{\frac{-1}{\tau-1}}$\\
$F^{-1}(1-1/M) = \left( M^{-1} + M^{-(\tau-1)} - M^{-\tau} \right)^{\frac{-1}{\tau-1}}$
\subsection{No maximum cut-off}
For $M=\infty$ we have:\\
PDF: $$f(x) = \frac{\tau-1}{m^{-(\tau-1)}} x^{-\tau} = \frac{\tau-1}{m} \left(\frac{x}{m}\right)^{-\tau}$$
CDF: $$F(x) = \frac{m^{-(\tau-1)} - x^{-(\tau-1)}}{m^{-(\tau-1)}} = 1 - \left(\frac{x}{m}\right)^{-(\tau-1)}$$
Inverse: $$F^{-1}(y) = \left( (1-y) m^{-(\tau-1)} \right)^{\frac{-1}{\tau-1}} = m \; \left( 1-y \right)^{\frac{-1}{\tau-1}}$$
For interpolation:\\
$F^{-1}(0) = m$\\
$F^{-1}(1-\frac{1}{n}) = m\cdot n^{\frac{1}{\tau-1}}$
\end{document}
|