Files @ 1c8999d261fd
Branch filter:

Location: AENC/switchchain/triangle_successrate_correlation_plots.m - annotation

1c8999d261fd 4.6 KiB application/vnd.wolfram.mathematica.package Show Source Show as Raw Download as Raw
Tom Bannink
Update canonical powerlaw generator
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
(* ::Package:: *)

Needs["ErrorBarPlots`"]


(* ::Section:: *)
(*Plot successrate over time*)


gsraw=Import[NotebookDirectory[]<>"data/graphdata_successrates_timeevol.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)


gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: avgtris
3: successrate
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,gdata[[All,1,1,1,2]]];


TwoAxisPlot[{f_, g_},{plotrange1_,plotrange2_}] := 
Module[{fgraph, ggraph, frange, grange, fticks, gticks, manualRanges},
manualRanges={plotrange1,plotrange2};
{fgraph, ggraph} = 
MapIndexed[
ListPlot[#1, Axes -> True, Joined->True,ImageSize->300,
PlotRange->manualRanges[[#2[[1]]]],
DataRange->{0,measureSkip*maxTime}
(* PlotStyle -> ColorData[1][#2[[1]]] *)
] &, {f, g}];
{frange, grange} = (PlotRange /. AbsoluteOptions[#, PlotRange])[[2]] & /@ {fgraph, ggraph};
fticks = N@FindDivisions[frange, 10]; 
gticks = Quiet@Transpose@{fticks, ToString[NumberForm[#, 2], StandardForm] & /@ Rescale[fticks, frange, grange]}; 
Show[fgraph, ggraph /. Graphics[graph_, s___] :> Graphics[GeometricTransformation[graph, RescalingTransform[{{0, 1}, grange}, {{0, 1}, frange}]], s],
Axes -> False, Frame -> True,
(*FrameStyle -> {ColorData[1] /@ {1, 2}, {Automatic, Automatic}}, *)
FrameTicks -> {{fticks, gticks}, {Automatic, Automatic}}]]


(* Test of plot function *)
TwoAxisPlot[{gdata[[1,1,{1,3},2]],gdata[[1,1,{1,3},3]]},{{0,12000},{0,100}}]


MeanFilter


(* For export *)
selectedData=gdata[[2,1]][[{1,3,4,5}]];
measureSkip=100;
minCount=Min[Map[Min[#[[2]]]&,selectedData]];
maxCount=Max[Map[Max[#[[2]]]&,selectedData]];
maxCount=Max[Map[1.5*Max[#[[2,-100;;-1]]]&,selectedData]];
maxTime=Max[Map[Length[#[[2]]]&,selectedData]];
(* maxTime=Round[30000/measureSkip]; *)
skipPts=Max[1,Round[maxTime/5000]]; (* Plotting every point is slow. Plot only once per `skipPts` timesteps *)
maxTime=Round[50000/measureSkip];
coarseData=Map[#[[2,1;;maxTime;;skipPts]]&,selectedData];
coarseData2=Map[#[[3,1;;maxTime;;skipPts]]/100&,selectedData];
coarseData3=Map[MeanFilter[#[[3]],6]/100&,selectedData];
labels=Map["{n,tau} = "<>ToString[#[[1]]]&,selectedData]
TwoAxisPlot[{coarseData,coarseData2},{{0,maxCount},{0,1}}]
plotTimeEvol1=ListPlot[coarseData,Joined->True,PlotRange->{0*minCount,maxCount},DataRange->{0,measureSkip*maxTime},Frame->True,FrameLabel->{"timesteps","number of triangles"},PlotLabel->"n = 1000, \[Tau]=2.2",ImageSize->300]
plotTimeEvol2=ListPlot[coarseData2,Joined->True,PlotRange->{0,1},DataRange->{0,measureSkip*maxTime},Frame->True,FrameLabel->{"timesteps","successrate"},PlotLabel->"n = 1000, \[Tau]=2.2",ImageSize->300,PlotStyle->Opacity[0.5]];
plotTimeEvol3=ListPlot[coarseData3,Joined->True,PlotRange->{0,1},DataRange->{0,measureSkip*maxTime}];
plotTimeEvol4=Show[plotTimeEvol2,plotTimeEvol3]
(* Map[ListPlot[#,Joined->True,PlotRange\[Rule]{minCount,maxCount},DataRange\[Rule]{0,maxTime}]&,coarseData] *)


Export[NotebookDirectory[]<>"plots/timeevol_22_successrate_triangles.pdf",plotTimeEvol1]
Export[NotebookDirectory[]<>"plots/timeevol_22_successrate.pdf",plotTimeEvol4]


(* ::Section:: *)
(*Plot #trianges vs some successrate*)


gsraw=Import[NotebookDirectory[]<>"data/graphdata_successrates.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)


gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: avgtris
3: successrate
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["\[Tau] = "<>ToString[#]&,gdata[[All,1,1,1,2]]];


allPlots=Map[Show[
ListPlot[#[[All,{3,2}]],
AxesOrigin->{0,0},
Frame->True,FrameLabel->{"successrate","average number of triangles"},
(*AspectRatio->Automatic,*)
PlotRange->{{0,1},Automatic},
ImageSize->Automatic,
PlotLabel->"n = "<>ToString[#[[1,1,1]]]<>" , \[Tau] = "<>ToString[#[[1,1,2]]],
PlotStyle->PointSize[0.0001]
],Plot[x,{x,1,10000}]]
&,gdata,{2}]


combiPlot=ListLogPlot[gdata[[{1,3,5,7,9},1,All,{3,2}]],
AxesOrigin->{0,0},
Frame->True,FrameLabel->{"successrate","average number of triangles"},
(*AspectRatio->Automatic,*)
PlotRange->Automatic,
ImageSize->300,
PlotLabel->"n = "<>ToString[gdata[[1,1]][[1,1,1]]],
PlotLegends->taulabels[[{1,3,5,7,9}]]
]


Export[NotebookDirectory[]<>"plots/successrate_correlations.pdf",combiPlot]