Files
@ 3d53c1c61477
Branch filter:
Location: AENC/switchchain/triangle_correlation_plots.m - annotation
3d53c1c61477
2.4 KiB
application/vnd.wolfram.mathematica.package
Update triangle exponent related plots
73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea 73c8d2811bea | (* ::Package:: *)
Needs["ErrorBarPlots`"]
(* ::Section:: *)
(*Data import*)
gsraw=Import[NotebookDirectory[]<>"data/graphdata_properties.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)
gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: avgTriangles
3: edges
4: dstn
5: { HH A, HH L, average A, average L } where for each there is (average of) {lambda1 , lambda1 - lambda2, lambda1/lambda2}
6: switching successrate after mixing
7: initial HH triangles
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["\[Tau] = "<>ToString[#]&,gdata[[All,1,1,1,2]]];
datatypeLabels={"(n,tau)","average number of triangles","edges","DSTN","Eigenvalues","successrate","initial number of triangles"};
(* ::Section:: *)
(*Plot triangle counts vs dsp*)
(* ::Subsection:: *)
(*Plot #trianges vs some degree-sequence-property*)
allPlots=Map[Show[
ListPlot[#[[All,{2,4}]],
AxesOrigin->{0,0},
Frame->True,FrameLabel->{"average number of triangles","degree-sequence-property"},
AspectRatio->Automatic,
ImageSize->Automatic,
PlotLabel->"n = "<>ToString[#[[1,1,1]]]<>" , \[Tau] = "<>ToString[#[[1,1,2]]],
PlotStyle->Black
],Plot[x,{x,1,10000}]]
&,gdata,{2}]
plotgrid=GraphicsRow[{GraphicsColumn[allPlots[[{1,2},1]]],allPlots[[3,1]]},Spacings->0,ImageSize->600]
(* ::Section:: *)
(*DSP, Edges, #triangles, successrate*)
(* datatype index:
1: {n,tau}
2: avgTriangles
3: edges
4: dstn
5: { HH A, HH L, average A, average L } where for each there is (average of) {lambda1 , lambda1 - lambda2, lambda1/lambda2}
6: switching successrate after mixing
7: initial HH triangles
*)
correlations={4,2};
tauChoices={2,5,8};
nChoice=-1;
combiPlot=Show[
ListLogLogPlot[gdata[[tauChoices,nChoice,All,correlations]],
(*AxesOrigin->{0,0},*)
(*PlotRange\[Rule]{{0,3000},{0,3000}},*)
PlotRange->Automatic,
Frame->True,FrameLabel->datatypeLabels[[correlations]],
AspectRatio->Automatic,
ImageSize->Automatic,
PlotLabel->"n = "<>ToString[gdata[[1,nChoice]][[1,1,1]]],
PlotLegends->taulabels[[tauChoices]]
],Plot[x,{x,1,10000},PlotStyle->Black]]
Map[DensityHistogram[gdata[[#,nChoice,All,correlations]],"Log",
Frame->True,FrameLabel->datatypeLabels[[correlations]],
PlotLabel->taulabels[[#]]
]
&,tauChoices]
|