Files @ 3e67925ef7ec
Branch filter:

Location: AENC/switchchain/triangle_ccm_timeevol_plots.m - annotation

3e67925ef7ec 3.7 KiB application/vnd.wolfram.mathematica.package Show Source Show as Raw Download as Raw
Tom Bannink
Add autocorrelation notebook
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
ef14718be3e4
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
f1904d0b9ecb
f1904d0b9ecb
8520e2011c5e
8520e2011c5e
8520e2011c5e
8520e2011c5e
f1904d0b9ecb
f1904d0b9ecb
f1904d0b9ecb
(* ::Package:: *)

Needs["ErrorBarPlots`"]


(* ::Section:: *)
(*Plot successrate over time*)


gsraw=Import[NotebookDirectory[]<>"data/graphdata_ccm_timeevol.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)


gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: edges
3: HH tri seq
4: {ccm1 #failed-attempts, ccm1 seq}
5: {ccm2 #failed-attempts, ccm2 seq}
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["\[Tau] = "<>ToString[#]&,gdata[[All,1,1,1,2]]];


(* ::Subsection:: *)
(*Canonical dataset (old code for multiple ccm runs per run)*)


(* For export *)
selectedRun=gdata[[1,1,1]];
measureSkip=1;
numEdges=selectedRun[[2]];
maxTris=Max[selectedRun[[3]]];
maxTime=Length[selectedRun[[3]]];
avgTris=Mean[selectedRun[[3,-maxTime/2;;-1]]];
skipPts=Max[1,Round[maxTime/500]]; (* Plotting every point is slow. Plot only once per `skipPts` timesteps *)

getCourseData[array_]:=Map[Mean,Partition[array,skipPts]];
coarseData=getCourseData[selectedRun[[3]]];
fullData=selectedRun[[3]];

shiftedCCMdata[offset_,data_]:=If[Length[data]==0,Nothing,
MapIndexed[{offset+(First[#2]-1)*skipPts,Mean[#1]}&,Partition[data,skipPts]]
];
coarseDatasCCM1=MapIndexed[shiftedCCMdata[numEdges*(First[#2]-1),#1]&,selectedRun[[4]]];
coarseDatasCCM2=MapIndexed[shiftedCCMdata[numEdges*(First[#2]-1),#1]&,selectedRun[[5]]];

getStartPoint[offset_,data_]:=If[Length[data]==0,
{Red,Point[{offset,10}]},
{Black,Point[{offset,data[[1]]}]}
];
startPoints1=MapIndexed[getStartPoint[numEdges*(First[#2]-1),#1]&,selectedRun[[4]]];

plotlabel="n = "<>ToString[selectedRun[[1,1]]]<>", \[Tau] = "<>ToString[selectedRun[[1,2]]];

plotTimeEvol1=ListPlot[coarseData,
Joined->True,PlotRange->{0,3*avgTris},DataRange->{0,measureSkip*maxTime},
Frame->True,FrameLabel->{"timesteps","number of triangles"},
PlotLabel->plotlabel,ImageSize->300,
PlotStyle->{Black},
Epilog->{PointSize[0.015],startPoints1}
];

(*
plotTimeEvol2=ListPlot[fullData,
Joined->True,PlotRange\[Rule]All,DataRange->{0,measureSkip*maxTime},
PlotStyle\[Rule]{Black,Opacity[0.3]}
];*)

plotTimeEvol3=ListPlot[coarseDatasCCM1,
Joined->True,PlotRange->All
];

plotTimeEvol4=Show[plotTimeEvol1,plotTimeEvol3]
(* Map[ListPlot[#,Joined->True,PlotRange\[Rule]{minCount,maxCount},DataRange\[Rule]{0,maxTime}]&,coarseData] *)


(* ::Subsection:: *)
(*New code*)


getCombinedData[run_]:=Module[{numEdges,maxTime,skipPts,getShiftedData,hhData,ccm1Data,ccm2Data},
numEdges=run[[2]];
maxTime=Length[run[[3]]];
skipPts=Max[1,Round[maxTime/500]];

getShiftedData[offset_,data_]:=If[Length[data]==0,{},
MapIndexed[{offset+(First[#2]-1)*skipPts,Mean[#1]}&,Partition[data,skipPts]]
];

hhData=getShiftedData[0,run[[3]]];
ccm1Data=getShiftedData[0*numEdges*run[[4,1]],run[[4,2]]];
ccm2Data=getShiftedData[0*numEdges*run[[5,1]],run[[5,2]]];

{Legended[hhData,"\[Tau] = "<>ToString[run[[1,2]]]],ccm1Data,ccm2Data}
]

dataSets=Map[getCombinedData,gdata,{3}];


dataSetsFlattened=Flatten[dataSets,3];
colorList=Table[ColorData[97,"ColorList"][[1+Floor[i/3]]],{i,0,Length[dataSetsFlattened]-1}];


plot1=ListPlot[dataSetsFlattened,Joined->True,PlotRange->{{0,40000},{0,6000}},PlotStyle->colorList,ImageSize->300,PlotLabel->nlabels[[1]],Frame->True,FrameLabel->{"timesteps","number of triangles"}]
plot1log=ListLogPlot[dataSetsFlattened,Joined->True,PlotRange->{{0,40000},{1,15000}},PlotStyle->colorList,ImageSize->300,PlotLabel->nlabels[[1]],Frame->True,FrameLabel->{"timesteps","number of triangles"}]


Export[NotebookDirectory[]<>"plots/timeevol_ccm.pdf",plot1]
Export[NotebookDirectory[]<>"plots/timeevol_ccm_log.pdf",plot1log]