Files
@ 4b35371bc534
Branch filter:
Location: AENC/switchchain/triangle_exponent_plots.m - annotation
4b35371bc534
4.7 KiB
application/vnd.wolfram.mathematica.package
Add more accurate triangle counts datafile
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 9de2b1d29b5d 2c86fdd4152e ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 2c86fdd4152e 2c86fdd4152e 2c86fdd4152e 2c86fdd4152e 2c86fdd4152e 2c86fdd4152e ba07c5475997 ba07c5475997 ba07c5475997 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 9de2b1d29b5d ba07c5475997 ba07c5475997 ba07c5475997 9de2b1d29b5d ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 32a7f1c13790 32a7f1c13790 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d ba07c5475997 ba07c5475997 2c86fdd4152e 2c86fdd4152e 2c86fdd4152e 2c86fdd4152e 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d ba07c5475997 ba07c5475997 9de2b1d29b5d 9de2b1d29b5d 68c5df4ebb15 68c5df4ebb15 68c5df4ebb15 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 9de2b1d29b5d 9de2b1d29b5d 9de2b1d29b5d ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 a410aaa16af7 ba07c5475997 9de2b1d29b5d 2c86fdd4152e 9de2b1d29b5d 2c86fdd4152e 2c86fdd4152e 2c86fdd4152e 2c86fdd4152e 2c86fdd4152e 2c86fdd4152e 2c86fdd4152e 2c86fdd4152e 2c86fdd4152e 2c86fdd4152e 68c5df4ebb15 68c5df4ebb15 68c5df4ebb15 | (* ::Package:: *)
Needs["ErrorBarPlots`"]
(* ::Section:: *)
(*Triangle exponent*)
(* ::Text:: *)
(*Expected number of triangles is the following powerlaw*)
(* ::DisplayFormula:: *)
(*#triangles = const\[Cross]n^(T(\[Tau])) where T(\[Tau])=3/2 (3-\[Tau])*)
(* When importing from exponent-only-data file or property-data file *)
(* graphdata_exponent_mix32.m *)
(* graphdata_exponent_highN.m *)
(* graphdata_properties2.m *)
(* graphdata_canonical_properties.m *)
gsraw=Import[NotebookDirectory[]<>"data/graphdata_exponent_hightau.m"];
gsraw=SortBy[gsraw,#[[1,1]]&]; (* Sort by n *)
averagesGrouped=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
gsraw2=Import[NotebookDirectory[]<>"data/graphdata_canonical_properties2.m"];
gsraw2=SortBy[gsraw2,#[[1,1]]&]; (* Sort by n *)
averagesGrouped2=GatherBy[gsraw2,{#[[1,2]]&,#[[1,1]]&}];
canonicalDatapoints=Map[{#[[1,1,1]],Mean[#[[All,2]]]}&,averagesGrouped2,{2}];
(* averagesGrouped[[ tau index, n index, run index , {ntau, avgtri} ]] *)
nlabels=Map["n = "<>ToString[#]&,averagesGrouped[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,averagesGrouped[[All,1,1,1,2]]];
mediansErrorBars=Map[
{{#[[1,1,1]],Median[#[[All,2]]]},
ErrorBar[MedianDeviation[#[[All,2]]]]
}&,averagesGrouped,{2}];
averagesErrorBars=Map[
{{#[[1,1,1]],Mean[#[[All,2]]]},
ErrorBar[StandardDeviation[#[[All,2]]]]
}&,averagesGrouped,{2}];
ErrorListPlot[averagesErrorBars,Joined->True,PlotMarkers->Automatic,PlotRange->All,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels]
ErrorListPlot[mediansErrorBars,Joined->True,PlotMarkers->Automatic,PlotRange->All,AxesLabel->{"n","median triangles"},PlotLegends->taulabels]
ListLogLogPlot[averagesErrorBars[[All,All,1]],Joined->True,PlotMarkers->Automatic,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels]
ListLogLogPlot[mediansErrorBars[[All,All,1]],Joined->True,PlotMarkers->Automatic,AxesLabel->{"n","median triangles"},PlotLegends->taulabels]
(* ::Subsection:: *)
(*Fitting the log-log-plot*)
nRange=5;;-1;
nRange=All;
averagesLoglogdata=Log[averagesErrorBars[[All,nRange,1]]];
mediansLoglogdata=Log[mediansErrorBars[[All,nRange,1]]];
averagesFits=Map[Fit[#,{1,logn},logn]&,averagesLoglogdata];
averagesFitsExtra=Map[LinearModelFit[#,logn,logn]&,averagesLoglogdata];
mediansFits=Map[Fit[#,{1,logn},logn]&,mediansLoglogdata];
mediansFitsExtra=Map[LinearModelFit[#,logn,logn]&,mediansLoglogdata];
canonicalloglogdata=Log[canonicalDatapoints[[All,nRange]]];
canonicalFitsExtra=Map[LinearModelFit[#,logn,logn]&,canonicalloglogdata];
averagesFitsExtra[[1]]["ParameterConfidenceIntervalTable"]
averagesFitsExtra[[1]]["BestFitParameters"]
averagesFitsExtra[[1]]["ParameterErrors"]
averagesFitsExtra[[1]]["ParameterConfidenceIntervals"]
plot1a=Show[ListLogLogPlot[averagesErrorBars[[All,All,1]],Joined->False,PlotMarkers->Automatic,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels],Plot[averagesFits,{logn,1,2000}]]
plot1b=Show[ListLogLogPlot[mediansErrorBars[[All,All,1]],Joined->False,PlotMarkers->Automatic,AxesLabel->{"n","median triangles"},PlotLegends->taulabels],Plot[mediansFits,{logn,1,2000}]]
Export[NotebookDirectory[]<>"plots/avgtris_n.pdf",plot1]
(* ::Subsection:: *)
(*Plot of T(\[Tau])*)
tauValues=averagesGrouped[[All,1,1,1,2]];
averagesExponents=Transpose[{tauValues,averagesFits[[All,2,1]]}];
mediansExponents=Transpose[{tauValues,mediansFits[[All,2,1]]}];
Show[ListPlot[{averagesExponents,mediansExponents},Joined->True,PlotMarkers->Automatic,AxesLabel->{"tau","exponent"},PlotRange->{{2,3},{0,1.6}}],Plot[3/2(3-tau),{tau,2,3}]]
(* ::Subsection:: *)
(*T(\[Tau]) including error bars*)
(* For visual, shift the tau values slightly left or right to distinguish the two datasets *)
tauValues=averagesGrouped[[All,1,1,1,2]];
averagesExponentsErrorBars=Map[{{#[[1]],#[[2]]["BestFitParameters"][[2]]},ErrorBar[#[[2]]["ParameterConfidenceIntervals"][[2]]-#[[2]]["BestFitParameters"][[2]]]}&,
Transpose[{tauValues-0.003,averagesFitsExtra}]];
mediansExponentsErrorBars=Map[{{#[[1]],#[[2]]["BestFitParameters"][[2]]},ErrorBar[#[[2]]["ParameterConfidenceIntervals"][[2]]-#[[2]]["BestFitParameters"][[2]]]}&,
Transpose[{tauValues+0.003,mediansFitsExtra}]];
canonicalExponentsErrorBars=Map[{{#[[1]],#[[2]]["BestFitParameters"][[2]]},ErrorBar[#[[2]]["ParameterConfidenceIntervals"][[2]]-#[[2]]["BestFitParameters"][[2]]]}&,
Transpose[{tauValues+0.000,canonicalFitsExtra}]];
plot2=Show[
ErrorListPlot[{averagesExponentsErrorBars,mediansExponentsErrorBars,canonicalExponentsErrorBars},
Joined->True,PlotMarkers->Automatic,
Frame->True,FrameLabel->{"tau","triangle exponent"},
PlotRange->{{2,3},{0,1.6}},
ImageSize->300],
Plot[3/2(3-tau),{tau,2,3},PlotStyle->{Black,Dashed}]]
Export[NotebookDirectory[]<>"plots/triangle_exponent.pdf",plot2]
|