Files
@ 4b6c189e4ae4
Branch filter:
Location: AENC/switchchain/triangle_exponent_plots.m - annotation
4b6c189e4ae4
2.8 KiB
application/vnd.wolfram.mathematica.package
Add mixing time analysis using exponential fits
ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 68c5df4ebb15 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 32a7f1c13790 32a7f1c13790 32a7f1c13790 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 68c5df4ebb15 68c5df4ebb15 68c5df4ebb15 68c5df4ebb15 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 68c5df4ebb15 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 68c5df4ebb15 68c5df4ebb15 68c5df4ebb15 68c5df4ebb15 | (* ::Package:: *)
Needs["ErrorBarPlots`"]
(* ::Section:: *)
(*Triangle exponent*)
(* ::Text:: *)
(*Expected number of triangles is the following powerlaw*)
(* ::DisplayFormula:: *)
(*#triangles = const\[Cross]n^(T(\[Tau])) where T(\[Tau])=3/2 (3-\[Tau])*)
(* When importing from exponent-only-data file or property-data file *)
(* graphdata_exponent_mix32.m *)
(* graphdata_exponent_highN.m *)
(* graphdata_properties2.m *)
gsraw=Import[NotebookDirectory[]<>"data/graphdata_exponent_mix32.m"];
gsraw=SortBy[gsraw,#[[1,1]]&]; (* Sort by n *)
averagesGrouped=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* averagesGrouped[[ tau index, n index, run index , {ntau, avgtri} ]] *)
nlabels=Map["n = "<>ToString[#]&,averagesGrouped[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,averagesGrouped[[All,1,1,1,2]]];
averagesErrorBars=Map[
{{#[[1,1,1]],Mean[#[[All,2]]]},
ErrorBar[StandardDeviation[#[[All,2]]]]
}&,averagesGrouped,{2}];
ErrorListPlot[averagesErrorBars,Joined->True,PlotMarkers->Automatic,PlotRange->All,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels]
ListLogLogPlot[averagesErrorBars[[All,All,1]],Joined->True,PlotMarkers->Automatic,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels]
(* ::Subsection:: *)
(*Fitting the log-log-plot*)
nRange=5;;-1;
nRange=All;
loglogdata=Log[averagesErrorBars[[All,nRange,1]]];
fits=Map[Fit[#,{1,logn},logn]&,loglogdata];
fitsExtra=Map[LinearModelFit[#,logn,logn]&,loglogdata];
fitsExtra[[1]]["ParameterConfidenceIntervalTable"]
fitsExtra[[1]]["BestFitParameters"]
fitsExtra[[1]]["ParameterErrors"]
fitsExtra[[1]]["ParameterConfidenceIntervals"]
plot1=Show[ListLogLogPlot[averagesErrorBars[[All,All,1]],Joined->False,PlotMarkers->Automatic,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels],Plot[fits,{logn,1,2000}]]
Export[NotebookDirectory[]<>"plots/avgtris_n.pdf",plot1]
(* ::Subsection:: *)
(*Plot of T(\[Tau])*)
tauValues=averagesGrouped[[All,1,1,1,2]];
exponents=Transpose[{tauValues,fits[[All,2,1]]}];
Show[ListPlot[exponents,Joined->True,PlotMarkers->Automatic,AxesLabel->{"tau","exponent"},PlotRange->{{2,3},{0,1.6}}],Plot[3/2(3-tau),{tau,2,3}]]
(* ::Subsection:: *)
(*T(\[Tau]) including error bars*)
tauValues=averagesGrouped[[All,1,1,1,2]];
exponentsErrorBars=Map[{{#[[1]],#[[2]]["BestFitParameters"][[2]]},ErrorBar[#[[2]]["ParameterConfidenceIntervals"][[2]]-#[[2]]["BestFitParameters"][[2]]]}&,
Transpose[{tauValues,fitsExtra}]];
plot2=Show[ErrorListPlot[exponentsErrorBars,Joined->True,PlotMarkers->Automatic,Frame->True,FrameLabel->{"tau","triangle exponent"},PlotRange->{{2,3},{0,1.6}},ImageSize->300],Plot[3/2(3-tau),{tau,2,3},PlotStyle->{Dashed}]]
Export[NotebookDirectory[]<>"plots/triangle_exponent.pdf",plot2]
|