Files
@ 5e8f0e15e05e
Branch filter:
Location: AENC/switchchain/cpp/switchchain_canonical_properties.cpp - annotation
5e8f0e15e05e
6.6 KiB
text/x-c++src
Update exponent plot
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 786c1ab9a61e 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 aa79d2994c1e 03b85970d933 03b85970d933 03b85970d933 03b85970d933 786c1ab9a61e 03b85970d933 03b85970d933 03b85970d933 786c1ab9a61e 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 aa79d2994c1e 786c1ab9a61e 786c1ab9a61e 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 a410aaa16af7 a410aaa16af7 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 03b85970d933 03b85970d933 03b85970d933 03b85970d933 03b85970d933 03b85970d933 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 a410aaa16af7 a410aaa16af7 a410aaa16af7 a410aaa16af7 a410aaa16af7 a410aaa16af7 32a7f1c13790 32a7f1c13790 aa79d2994c1e aa79d2994c1e 32a7f1c13790 32a7f1c13790 32a7f1c13790 03b85970d933 03b85970d933 32a7f1c13790 32a7f1c13790 aa79d2994c1e 32a7f1c13790 aa79d2994c1e a410aaa16af7 a410aaa16af7 a410aaa16af7 a410aaa16af7 a410aaa16af7 a410aaa16af7 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 a410aaa16af7 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 a410aaa16af7 a410aaa16af7 a410aaa16af7 a410aaa16af7 a410aaa16af7 a410aaa16af7 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 32a7f1c13790 | #include "exports.hpp"
#include "graph.hpp"
#include "graph_powerlaw.hpp"
#include "graph_spectrum.hpp"
#include "switchchain.hpp"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>
double getDSTN(const DegreeSequence& ds) {
std::vector<std::vector<double>> vals(ds.size());
for (auto& v : vals) {
v.resize(ds.size(), 0);
}
auto D = 0u;
for (auto d : ds)
D += d;
double factor = 1.0 / double(D);
for (auto i = 0u; i < ds.size(); ++i) {
for (auto j = i + 1; j < ds.size(); ++j) {
vals[i][j] = 1.0 - std::exp(-(ds[i] * ds[j] * factor));
}
}
double result = 0.0;
for (auto i = 0u; i < ds.size(); ++i) {
for (auto j = i + 1; j < ds.size(); ++j) {
for (auto k = j + 1; k < ds.size(); ++k) {
result += vals[i][j] * vals[j][k] * vals[i][k];
}
}
}
return result;
}
int main(int argc, char* argv[]) {
// Simulation parameters
const int numVerticesMin = 1000;
const int numVerticesMax = 10000;
const int numVerticesStep = 1000;
float tauValues[] = {2.05f, 2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f, 2.95f};
//const int totalDegreeSamples = 5000;
auto getMixingTime = [](int n, float tau) {
return int(50.0f * (50.0f - 5.0f * (tau - 2.0f)) * n);
};
auto getMeasurements = [](int n, float tau) {
(void)n;
(void)tau;
return 1000;
};
auto getMeasureSkip = [](int n, float tau) {
(void)tau;
return 30 * n; // Take a sample every ... steps
};
// Output file
std::ofstream outfile;
if (argc >= 2)
outfile.open(argv[1]);
else
outfile.open("graphdata_canonical_properties.m");
if (!outfile.is_open()) {
std::cout << "ERROR: Could not open output file.\n";
return 1;
}
// Output Mathematica-style comment to indicate file contents
outfile << "(*\n";
outfile << "n from " << numVerticesMin << " to " << numVerticesMax
<< " step " << numVerticesStep << std::endl;
outfile << "tauValues: " << tauValues << std::endl;
outfile << "Canonical degree sequence.\n";
outfile << "mixingTime: 50 * (50 - 5 (tau - 2)) n\n";
outfile << "measurements: 1000\n";
outfile << "measureSkip: 30 n\n";
outfile << "data:\n";
outfile << "1: {n,tau}\n";
outfile << "2: avgTriangles\n";
outfile << "3: edges\n";
outfile << "4: dstn\n";
//outfile << "5: { HH A, HH L, average A, average L } where for each there is (average of) {lambda1 , lambda1 - lambda2, lambda1/lambda2}\n";
outfile << "5: empty\n";
outfile << "6: switching successrate after mixing\n";
outfile << "7: initial HH triangles\n";
outfile << "*)" << std::endl;
// Mathematica does not accept normal scientific notation
outfile << std::fixed;
outfile << '{';
bool outputComma = false;
Graph g;
for (int numVertices = numVerticesMin; numVertices <= numVerticesMax;
numVertices += numVerticesStep) {
for (float tau : tauValues) {
DegreeSequence ds;
generateCanonicalPowerlawGraph(numVertices, tau, g, ds);
SwitchChain chain;
if (!chain.initialize(g)) {
std::cerr << "Could not initialize Markov chain.\n";
return 1;
}
std::cout << "Running (n,tau) = (" << numVertices << ',' << tau
<< "). " << std::flush;
// Mix
int mixingTime = getMixingTime(numVertices, tau);
for (int i = 0; i < mixingTime; ++i) {
chain.doMove();
}
std::cout << "Mixing done. " << std::flush;
std::array<double, 3> HHAspectrum;
std::array<double, 3> HHLspectrum;
std::array<double, 3> avgAspectrum;
std::array<double, 3> avgLspectrum;
//auto getSpectralValues =
// [](const std::vector<float> &s) -> std::array<double, 3> {
// auto l1 = s[s.size() - 1];
// auto l2 = s[s.size() - 2];
// return {l1, l1 - l2, l1 / l2};
//};
GraphSpectrum gs_start(g);
GraphSpectrum gs(chain.g);
HHAspectrum.fill(0);
HHLspectrum.fill(0);
//HHAspectrum =
// getSpectralValues(gs_start.computeAdjacencySpectrum());
//HHLspectrum =
// getSpectralValues(gs_start.computeLaplacianSpectrum());
long long trianglesTotal = 0;
chain.g.getTrackedTriangles() = chain.g.countTriangles();
int movesDone = 0;
avgAspectrum.fill(0);
avgLspectrum.fill(0);
int measurements = getMeasurements(numVertices, tau);
int measureSkip = getMeasureSkip(numVertices, tau);
for (int i = 0; i < measurements; ++i) {
for (int j = 0; j < measureSkip; ++j)
if (chain.doMove(true))
++movesDone;
trianglesTotal += chain.g.getTrackedTriangles();
//auto sA = getSpectralValues(gs.computeAdjacencySpectrum());
//auto sL = getSpectralValues(gs.computeLaplacianSpectrum());
//for (auto i = 0u; i < 3; ++i) {
// avgAspectrum[i] += sA[i];
// avgLspectrum[i] += sL[i];
//}
}
float avgTriangles = float(trianglesTotal) / float(measurements);
float successrate =
float(movesDone) / float(measurements * measureSkip);
for (auto &f : avgAspectrum)
f /= float(measurements);
for (auto &f : avgLspectrum)
f /= float(measurements);
std::cout << "Measuring done. " << std::flush;
if (outputComma)
outfile << ',' << '\n';
outputComma = true;
outfile << '{' << '{' << numVertices << ',' << tau << '}';
outfile << ',' << avgTriangles;
outfile << ',' << g.edgeCount();
outfile << ',' << getDSTN(ds);
outfile << ",{}";
//outfile << ',' << '{' << HHAspectrum;
//outfile << ',' << HHLspectrum;
//outfile << ',' << avgAspectrum;
//outfile << ',' << avgLspectrum;
//outfile << '}';
outfile << ',' << successrate;
outfile << ',' << g.countTriangles();
outfile << '}' << std::flush;
std::cout << "Output done." << std::endl;
}
}
outfile << '}';
return 0;
}
|