Files
@ 786c1ab9a61e
Branch filter:
Location: AENC/switchchain/cpp/graph_spectrum.hpp - annotation
786c1ab9a61e
1.7 KiB
text/x-c++hdr
Add partial simulation datasets
b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 | #include "graph.hpp"
#include <Eigen/Dense>
#include <Eigen/Eigenvalues>
using MatrixType =
Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
// A: Adjacency matrix
// lambda_max <= d_max
//
// L: Laplacian
// L = D - A
///
// P: Random walk matrix
// lambda_max = 1
class GraphSpectrum {
public:
GraphSpectrum(const Graph& g) : graph(g) {}
~GraphSpectrum() {}
std::vector<float> computeAdjacencySpectrum() const {
// matrix stored as std::vector<std::vector<bool>>
auto& badj = graph.getBooleanAdj();
// Convert it to MatrixType
auto n = badj.size();
MatrixType m(n, n);
for (auto i = 0u; i < n; ++i)
for (auto j = 0u; j < n; ++j)
m(i, j) = badj[i][j] ? 1.0f : 0.0f;
return getEigenvalues_(m);
}
std::vector<float> computeLaplacianSpectrum() const {
// matrix stored as std::vector<std::vector<bool>>
auto& badj = graph.getBooleanAdj();
auto& adj = graph.getAdj();
// - A
auto n = badj.size();
MatrixType m(n, n);
for (auto i = 0u; i < n; ++i)
for (auto j = 0u; j < n; ++j)
m(i, j) = badj[i][j] ? -1.0f : 0.0f;
// + D
for (auto i = 0u; i < n; ++i)
m(i, i) = float(adj[i].size());
return getEigenvalues_(m);
}
private:
const Graph& graph;
std::vector<float> getEigenvalues_(const MatrixType& m) const {
Eigen::SelfAdjointEigenSolver<MatrixType> es(
m, Eigen::DecompositionOptions::EigenvaluesOnly);
auto ev = es.eigenvalues();
return std::vector<float>(ev.data(), ev.data() + ev.rows() * ev.cols());
}
};
|