Files
@ 7dbca3656ee1
Branch filter:
Location: AENC/switchchain/powerlaw_info.tex - annotation
7dbca3656ee1
1.2 KiB
text/x-tex
Add proper creationfreq simulation and plots
42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d | \documentclass{article}
\begin{document}
\section{Continuous powerlaw with minimum cut-off}
Exponent $\tau > 1$.
\subsection{Also maximum cut-off}
Let $m$ be the minimum, $M$ be the maximum.\\
PDF: $$f(x) = \frac{\tau-1}{m^{-(\tau-1)} - M^{-(\tau-1)}} x^{-\tau}$$
CDF: $$F(x) = \frac{m^{-(\tau-1)} - x^{-(\tau-1)}}{m^{-(\tau-1)} - M^{-(\tau-1)}}$$
Inverse: $$F^{-1}(y) = \left( (1-y) m^{-(\tau-1)} + y M^{-(\tau-1)} \right)^{\frac{-1}{\tau-1}}$$
i.e. linear interpolate between $M^{-(\tau-1)} < m^{-(\tau-1)}$.\\
$F^{-1}(0) = m$ and $F^{-1}(1) = M$.\\
For $m=1$ and $M$ steps of interpolation:\\
$F^{-1}(1/M) = \left( 1-M^{-1} + M^{-\tau} \right)^{\frac{-1}{\tau-1}}$\\
$F^{-1}(1-1/M) = \left( M^{-1} + M^{-(\tau-1)} - M^{-\tau} \right)^{\frac{-1}{\tau-1}}$
\subsection{No maximum cut-off}
For $M=\infty$ we have:\\
PDF: $$f(x) = \frac{\tau-1}{m^{-(\tau-1)}} x^{-\tau} = \frac{\tau-1}{m} \left(\frac{x}{m}\right)^{-\tau}$$
CDF: $$F(x) = \frac{m^{-(\tau-1)} - x^{-(\tau-1)}}{m^{-(\tau-1)}} = 1 - \left(\frac{x}{m}\right)^{-(\tau-1)}$$
Inverse: $$F^{-1}(y) = \left( (1-y) m^{-(\tau-1)} \right)^{\frac{-1}{\tau-1}} = m \; \left( 1-y \right)^{\frac{-1}{\tau-1}}$$
For interpolation:\\
$F^{-1}(0) = m$\\
$F^{-1}(1-\frac{1}{n}) = m\cdot n^{\frac{1}{\tau-1}}$
\end{document}
|