Files @ b9486351acf3
Branch filter:

Location: AENC/switchchain/cpp/switchchain_successrates.cpp - annotation

Tom Bannink
Modify successrates cpp file for non-timeevol
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
b9486351acf3
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
b9486351acf3
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
b9486351acf3
b9486351acf3
b9486351acf3
b9486351acf3
b9486351acf3
b9486351acf3
b9486351acf3
c95330463954
b9486351acf3
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
c95330463954
#include "exports.hpp"
#include "graph.hpp"
#include "powerlaw.hpp"
#include <algorithm>
#include <array>
#include <fstream>
#include <iostream>
#include <numeric>
#include <random>
#include <vector>

// Its assumed that u,v are distinct.
// Check if all four vertices are distinct
bool edgeConflicts(const Edge& e1, const Edge& e2) {
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
}

class SwitchChain {
  public:
    SwitchChain()
        : mt(std::random_device{}()), permutationDistribution(0.5)
    // permutationDistribution(0, 2)
    {
        // random_device uses hardware entropy if available
        // std::random_device rd;
        // mt.seed(rd());
    }
    ~SwitchChain() {}

    bool initialize(const Graph& gstart) {
        if (gstart.edgeCount() == 0)
            return false;
        g = gstart;
        edgeDistribution.param(
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
        return true;
    }

    bool doMove() {
        int e1index, e2index;
        int timeout = 0;
        // Keep regenerating while conflicting edges
        do {
            e1index = edgeDistribution(mt);
            e2index = edgeDistribution(mt);
            if (++timeout % 100 == 0) {
                std::cerr << "Warning: sampled " << timeout
                          << " random edges but they keep conflicting.\n";
            }
        } while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));

        // Consider one of the three possible permutations
        // 1) e1.u - e1.v and e2.u - e2.v (original)
        // 2) e1.u - e2.u and e1.v - e2.v
        // 3) e1.u - e2.v and e1.v - e2.u
        bool switchType = permutationDistribution(mt);
        return g.exchangeEdges(e1index, e2index, switchType);
    }

    Graph g;
    std::mt19937 mt;
    std::uniform_int_distribution<> edgeDistribution;
    //std::uniform_int_distribution<> permutationDistribution;
    std::bernoulli_distribution permutationDistribution;
};

void getTriangleDegrees(const Graph& g) {
    std::vector<std::array<std::size_t,3>> trids;
    const auto& adj = g.getAdj();
    int triangles = 0;
    for (auto& v : adj) {
        for (unsigned int i = 0; i < v.size(); ++i) {
            for (unsigned int j = i + 1; j < v.size(); ++j) {
                if (g.hasEdge({v[i], v[j]})) {
                    ++triangles;
                    std::array<std::size_t, 3> ds = {{v.size(), adj[v[i]].size(),
                                                     adj[v[j]].size()}};
                    std::sort(ds.begin(), ds.end());
                    trids.push_back(ds);
                }
            }
        }
    }
    assert(triangles % 3 == 0);
    return;
}

//
// Assumes degree sequence does NOT contain any zeroes!
//
// method2 = true  -> take highest degree and finish its pairing completely
// method2 = false -> take new highest degree after every pairing
template <typename RNG>
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, RNG& rng, bool method2) {
    // Similar to Havel-Hakimi but instead of pairing up with the highest ones
    // that remain, simply pair up with random ones
    unsigned int n = ds.size();

    // degree, vertex index
    std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
    for (unsigned int i = 0; i < n; ++i) {
        degrees[i].first = ds[i];
        degrees[i].second = i;
    }

    std::vector<decltype(degrees.begin())> available;
    available.reserve(n);

    // Clear the graph
    g.reset(n);

    while (!degrees.empty()) {
        std::shuffle(degrees.begin(), degrees.end(), rng);
        // Get the highest degree:
        // If there are multiple highest ones, we pick a random one,
        // ensured by the shuffle.
        // The shuffle is needed anyway for the remaining part
        unsigned int dmax = 0;
        auto uIter = degrees.begin();
        for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
            if (iter->first >= dmax) {
                dmax = iter->first;
                uIter = iter;
            }
        }

        if (dmax > degrees.size() - 1)
            return false;

        if (dmax == 0) {
            std::cerr << "ERROR 1 in GCM.\n";
        }

        unsigned int u = uIter->second;

        if (method2) {
            // Take the highest degree out of the vector
            degrees.erase(uIter);

            // Now assign randomly to the remaining vertices
            // Since its shuffled, we can pick the first 'dmax' ones
            auto vIter = degrees.begin();
            while (dmax--) {
                if (vIter->first == 0)
                    std::cerr << "ERROR in GCM2.\n";
                if (!g.addEdge({u, vIter->second}))
                    std::cerr << "ERROR. Could not add edge in GCM2.\n";
                vIter->first--;
                if (vIter->first == 0)
                    vIter = degrees.erase(vIter);
                else
                    vIter++;
            }
        } else {
            // Pair with a random vertex that is not u itself and to which
            // u has not paired yet!
            available.clear();
            for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
                if (iter->second != u && !g.hasEdge({u, iter->second}))
                    available.push_back(iter);
            }
            if (available.empty())
                return false;
            std::uniform_int_distribution<> distr(0, available.size() - 1);
            auto vIter = available[distr(rng)];
            // pair u to v
            if (vIter->first == 0)
                std::cerr << "ERROR 2 in GCM1.\n";
            if (!g.addEdge({u, vIter->second}))
                std::cerr << "ERROR. Could not add edge in GCM1.\n";
            // Purge anything with degree zero
            // Be careful with invalidating the other iterator!
            // Degree of u is always greater or equal to the degree of v
            if (dmax == 1) {
                // Remove both
                // Erasure invalidates all iterators AFTER the erased one
                if (vIter > uIter) {
                    degrees.erase(vIter);
                    degrees.erase(uIter);
                } else {
                    degrees.erase(uIter);
                    degrees.erase(vIter);
                }
            } else {
                // Remove only v if it reaches zero
                uIter->first--;
                vIter->first--;
                if (vIter->first == 0)
                    degrees.erase(vIter);
            }
            //degrees.erase(std::remove_if(degrees.begin(), degrees.end(),
            //                             [](auto x) { return x.first == 0; }));
        }
    }
    return true;
}

int main(int argc, char* argv[]) {
    // Generate a random degree sequence
    std::mt19937 rng(std::random_device{}());

    // Goal:
    // Degrees follow a power-law distribution with some parameter tau
    // Expect:  #tri = const * n^{ something }
    // The goal is to find the 'something' by finding the number of triangles
    // for different values of n and tau
    //float tauValues[] = {2.5f};
    float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};

    Graph g;
    Graph g1;
    Graph g2;

    std::ofstream outfile;

    if (argc >= 2)
        outfile.open(argv[1]);
    else   
        outfile.open("graphdata_successrates.m");

    if (!outfile.is_open()) {
        std::cout << "ERROR: Could not open output file.\n";
        return 1;
    }

    outfile << '{';
    bool outputComma = false;

    for (int numVertices = 1000; numVertices <= 1000; numVertices += 1000) {
        for (float tau : tauValues) {

            DegreeSequence ds(numVertices);
            powerlaw_distribution degDist(tau, 1, numVertices);
            //std::poisson_distribution<> degDist(12);

            // For a single n,tau take samples over several instances of
            // the degree distribution.
            // 500 samples seems to give reasonable results
            for (int degreeSample = 0; degreeSample < 2000; ++degreeSample) {
                // Generate a graph
                // might require multiple tries
                for (int i = 1; ; ++i) {
                    std::generate(ds.begin(), ds.end(),
                                  [&degDist, &rng] { return degDist(rng); });
                    // First make the sum even
                    unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0);
                    if (sum % 2) {
                        continue;
                        // Can we do this: ??
                        ds.back()++;
                    }

                    if (g.createFromDegreeSequence(ds))
                        break;

                    // When 10 tries have not worked, output a warning
                    if (i % 10 == 0) {
                        std::cerr << "Warning: could not create graph from "
                                     "degree sequence. Trying again...\n";
                    }
                }

                SwitchChain chain;
                if (!chain.initialize(g)) {
                    std::cerr << "Could not initialize Markov chain.\n";
                    return 1;
                }

                std::cout << "Running n = " << numVertices << ", tau = " << tau
                          << ". \t" << std::flush;

                //int mixingTime = (32.0f - 26.0f*(tau - 2.0f)) * numVertices; //40000;
                //constexpr int measurements = 50;
                //constexpr int measureSkip =
                //    200; // Take a sample every ... steps
                int mixingTime = 0;
                constexpr int measurements = 500;
                constexpr int measureSkip = 100;


                int movesTotal = 0;
                int movesSuccess = 0;

                int triangles[measurements];

                for (int i = 0; i < mixingTime; ++i) {
                    ++movesTotal;
                    if (chain.doMove()) {
                        ++movesSuccess;
                    }
                }

                std::vector<int> successRates;
                successRates.reserve(measurements);
                int successrate = 0;
                for (int i = 0; i < measurements; ++i) {
                    for (int j = 0; j < measureSkip; ++j) {
                        ++movesTotal;
                        if (chain.doMove()) {
                            ++movesSuccess;
                            ++successrate;
                        }
                    }
                    triangles[i] = chain.g.countTriangles();
                    successRates.push_back(successrate);
                    successrate = 0;
                }

                std::cout << '('
                          << 100.0f * float(movesSuccess) / float(movesTotal)
                          << "% successrate). " << std::flush;
                // std::cout << std::endl;

                if (outputComma)
                    outfile << ',' << '\n';
                outputComma = true;

                long long trianglesTotal = 0;
                for (int i = 0; i < measurements; ++i)
                    trianglesTotal += triangles[i];

                float avgTriangles =
                    float(trianglesTotal) / float(measurements);

                outfile << '{' << '{' << numVertices << ',' << tau << '}';
                outfile << ',' << avgTriangles;
                outfile << ',' << successRates;
                outfile << '}' << std::flush;

                std::cout << std::endl;
            }
        }
    }
    outfile << '}';
    return 0;
}