Files @ b9691ef87e6d
Branch filter:

Location: AENC/switchchain/triangle_successrate_correlation_plots.m - annotation

b9691ef87e6d 4.6 KiB application/vnd.wolfram.mathematica.package Show Source Show as Raw Download as Raw
Tom Bannink
Add bruteforce graph simulation
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
91b906fd074a
(* ::Package:: *)

Needs["ErrorBarPlots`"]


(* ::Section:: *)
(*Plot successrate over time*)


gsraw=Import[NotebookDirectory[]<>"data/graphdata_successrates_timeevol.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)


gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: avgtris
3: successrate
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,gdata[[All,1,1,1,2]]];


TwoAxisPlot[{f_, g_},{plotrange1_,plotrange2_}] := 
Module[{fgraph, ggraph, frange, grange, fticks, gticks, manualRanges},
manualRanges={plotrange1,plotrange2};
{fgraph, ggraph} = 
MapIndexed[
ListPlot[#1, Axes -> True, Joined->True,ImageSize->300,
PlotRange->manualRanges[[#2[[1]]]],
DataRange->{0,measureSkip*maxTime}
(* PlotStyle -> ColorData[1][#2[[1]]] *)
] &, {f, g}];
{frange, grange} = (PlotRange /. AbsoluteOptions[#, PlotRange])[[2]] & /@ {fgraph, ggraph};
fticks = N@FindDivisions[frange, 10]; 
gticks = Quiet@Transpose@{fticks, ToString[NumberForm[#, 2], StandardForm] & /@ Rescale[fticks, frange, grange]}; 
Show[fgraph, ggraph /. Graphics[graph_, s___] :> Graphics[GeometricTransformation[graph, RescalingTransform[{{0, 1}, grange}, {{0, 1}, frange}]], s],
Axes -> False, Frame -> True,
(*FrameStyle -> {ColorData[1] /@ {1, 2}, {Automatic, Automatic}}, *)
FrameTicks -> {{fticks, gticks}, {Automatic, Automatic}}]]


(* Test of plot function *)
TwoAxisPlot[{gdata[[1,1,{1,3},2]],gdata[[1,1,{1,3},3]]},{{0,12000},{0,100}}]


MeanFilter


(* For export *)
selectedData=gdata[[2,1]][[{1,3,4,5}]];
measureSkip=100;
minCount=Min[Map[Min[#[[2]]]&,selectedData]];
maxCount=Max[Map[Max[#[[2]]]&,selectedData]];
maxCount=Max[Map[1.5*Max[#[[2,-100;;-1]]]&,selectedData]];
maxTime=Max[Map[Length[#[[2]]]&,selectedData]];
(* maxTime=Round[30000/measureSkip]; *)
skipPts=Max[1,Round[maxTime/5000]]; (* Plotting every point is slow. Plot only once per `skipPts` timesteps *)
maxTime=Round[50000/measureSkip];
coarseData=Map[#[[2,1;;maxTime;;skipPts]]&,selectedData];
coarseData2=Map[#[[3,1;;maxTime;;skipPts]]/100&,selectedData];
coarseData3=Map[MeanFilter[#[[3]],6]/100&,selectedData];
labels=Map["{n,tau} = "<>ToString[#[[1]]]&,selectedData]
TwoAxisPlot[{coarseData,coarseData2},{{0,maxCount},{0,1}}]
plotTimeEvol1=ListPlot[coarseData,Joined->True,PlotRange->{0*minCount,maxCount},DataRange->{0,measureSkip*maxTime},Frame->True,FrameLabel->{"timesteps","number of triangles"},PlotLabel->"n = 1000, \[Tau]=2.2",ImageSize->300]
plotTimeEvol2=ListPlot[coarseData2,Joined->True,PlotRange->{0,1},DataRange->{0,measureSkip*maxTime},Frame->True,FrameLabel->{"timesteps","successrate"},PlotLabel->"n = 1000, \[Tau]=2.2",ImageSize->300,PlotStyle->Opacity[0.5]];
plotTimeEvol3=ListPlot[coarseData3,Joined->True,PlotRange->{0,1},DataRange->{0,measureSkip*maxTime}];
plotTimeEvol4=Show[plotTimeEvol2,plotTimeEvol3]
(* Map[ListPlot[#,Joined->True,PlotRange\[Rule]{minCount,maxCount},DataRange\[Rule]{0,maxTime}]&,coarseData] *)


Export[NotebookDirectory[]<>"plots/timeevol_22_successrate_triangles.pdf",plotTimeEvol1]
Export[NotebookDirectory[]<>"plots/timeevol_22_successrate.pdf",plotTimeEvol4]


(* ::Section:: *)
(*Plot #trianges vs some successrate*)


gsraw=Import[NotebookDirectory[]<>"data/graphdata_successrates.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)


gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: avgtris
3: successrate
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["\[Tau] = "<>ToString[#]&,gdata[[All,1,1,1,2]]];


allPlots=Map[Show[
ListPlot[#[[All,{3,2}]],
AxesOrigin->{0,0},
Frame->True,FrameLabel->{"successrate","average number of triangles"},
(*AspectRatio->Automatic,*)
PlotRange->{{0,1},Automatic},
ImageSize->Automatic,
PlotLabel->"n = "<>ToString[#[[1,1,1]]]<>" , \[Tau] = "<>ToString[#[[1,1,2]]],
PlotStyle->PointSize[0.0001]
],Plot[x,{x,1,10000}]]
&,gdata,{2}]


combiPlot=ListLogPlot[gdata[[{1,3,5,7,9},1,All,{3,2}]],
AxesOrigin->{0,0},
Frame->True,FrameLabel->{"successrate","average number of triangles"},
(*AspectRatio->Automatic,*)
PlotRange->Automatic,
ImageSize->300,
PlotLabel->"n = "<>ToString[gdata[[1,1]][[1,1,1]]],
PlotLegends->taulabels[[{1,3,5,7,9}]]
]


Export[NotebookDirectory[]<>"plots/successrate_correlations.pdf",combiPlot]